Recently, Large Language Models (LLMs) have enhanced user interaction, enabling seamless information retrieval and recommendations. However, concerns emerge as these LLMs have shown tendencies to display discrimination related to users' sensitive characteristics (such as gender), leading to explicit user unfairness. Furthermore, our analysis uncovers a more discreet variant of bias in LLMs, defined as implicit user unfairness, wherein these models demonstrate discriminatory recommendation behaviors based solely on non-sensitive user details, like usernames or email addresses. This subtle form of unfairness, while more pervasive, poses a significant threat to the ethical integrity and rights of minority user groups. To comprehensively explore implicit user unfairness, our analysis unfolds in three key steps: (1) We uncover the reasons for this implicit user unfairness: LLMs can infer users' sensitive attributes from non-sensitive attributes (e.g. user names) due to their extensive world knowledge. (2) Our findings expose that the magnitude of implicit user unfairness within LLMs surpasses the level of explicit user unfairness observed in traditional recommender models, signifying a more alarming issue of unfairness, i.e. some non-sensitive features of users like names may result in more serious discrimination phenomena. (3) We analyze the long-term effect of implicit user unfairness, identifying that it will reinforce information bubbles at an accelerated rate compared to traditional RS. We emphasize the need to identify and mitigate implicit user unfairness, aiming to avert the potential human-LLMs recommendation systems deterioration.
Significant improvements in end-to-end speech translation (ST) have been achieved through the application of multi-task learning. However, the extent to which auxiliary tasks are highly consistent with the ST task, and how much this approach truly helps, have not been thoroughly studied. In this paper, we investigate the consistency between different tasks, considering different times and modules. We find that the textual encoder primarily facilitates cross-modal conversion, but the presence of noise in speech impedes the consistency between text and speech representations. Furthermore, we propose an improved multi-task learning (IMTL) approach for the ST task, which bridges the modal gap by mitigating the difference in length and representation. We conduct experiments on the MuST-C dataset. The results demonstrate that our method attains state-of-the-art results. Moreover, when additional data is used, we achieve the new SOTA result on MuST-C English to Spanish task with 20.8% of the training time required by the current SOTA method.
We present a computationally efficient framework, called FlowDRO, for solving flow-based distributionally robust optimization (DRO) problems with Wasserstein uncertainty sets while aiming to find continuous worst-case distribution (also called the Least Favorable Distribution, LFD). The requirement for LFD to be continuous is so that the algorithm can be scalable to problems with larger sample sizes and achieve better generalization capability for the induced robust algorithms. To tackle the computationally challenging infinitely dimensional optimization problem, we leverage flow-based models and continuous-time invertible transport maps between the data distribution and the target distribution. We also develop a Wasserstein proximal gradient flow type of algorithm. In theory, we establish the equivalence of the solution by optimal transport map to the original formulation, as well as the dual form of the problem through Wasserstein calculus and Brenier theorem. In practice, we parameterize the transport maps by a sequence of neural networks progressively trained in blocks by gradient descent. Our computational framework is general, can handle high-dimensional data with large sample sizes, and can be useful for various applications. We demonstrate its usage in adversarial learning, distributionally robust hypothesis testing, and a new mechanism for data-driven distribution perturbation differential privacy, where the proposed method gives strong empirical performance on real high-dimensional data.
Existing industrial anomaly detection (IAD) methods predict anomaly scores for both anomaly detection and localization. However, they struggle to perform a multi-turn dialog and detailed descriptions for anomaly regions, e.g., color, shape, and categories of industrial anomalies. Recently, large multimodal (i.e., vision and language) models (LMMs) have shown eminent perception abilities on multiple vision tasks such as image captioning, visual understanding, visual reasoning, etc., making it a competitive potential choice for more comprehensible anomaly detection. However, the knowledge about anomaly detection is absent in existing general LMMs, while training a specific LMM for anomaly detection requires a tremendous amount of annotated data and massive computation resources. In this paper, we propose a novel large multi-modal model by applying vision experts for industrial anomaly detection (dubbed Myriad), which leads to definite anomaly detection and high-quality anomaly description. Specifically, we adopt MiniGPT-4 as the base LMM and design an Expert Perception module to embed the prior knowledge from vision experts as tokens which are intelligible to Large Language Models (LLMs). To compensate for the errors and confusions of vision experts, we introduce a domain adapter to bridge the visual representation gaps between generic and industrial images. Furthermore, we propose a Vision Expert Instructor, which enables the Q-Former to generate IAD domain vision-language tokens according to vision expert prior. Extensive experiments on MVTec-AD and VisA benchmarks demonstrate that our proposed method not only performs favorably against state-of-the-art methods under the 1-class and few-shot settings, but also provide definite anomaly prediction along with detailed descriptions in IAD domain.
We present a computationally efficient framework, called \texttt{FlowDRO}, for solving flow-based distributionally robust optimization (DRO) problems with Wasserstein uncertainty sets, when requiring the worst-case distribution (also called the Least Favorable Distribution, LFD) to be continuous so that the algorithm can be scalable to problems with larger sample sizes and achieve better generalization capability for the induced robust algorithms. To tackle the computationally challenging infinitely dimensional optimization problem, we leverage flow-based models, continuous-time invertible transport maps between the data distribution and the target distribution, and develop a Wasserstein proximal gradient flow type of algorithm. In practice, we parameterize the transport maps by a sequence of neural networks progressively trained in blocks by gradient descent. Our computational framework is general, can handle high-dimensional data with large sample sizes, and can be useful for various applications. We demonstrate its usage in adversarial learning, distributionally robust hypothesis testing, and a new mechanism for data-driven distribution perturbation differential privacy, where the proposed method gives strong empirical performance on real high-dimensional data.
In this study, we present synchronous bilingual Connectionist Temporal Classification (CTC), an innovative framework that leverages dual CTC to bridge the gaps of both modality and language in the speech translation (ST) task. Utilizing transcript and translation as concurrent objectives for CTC, our model bridges the gap between audio and text as well as between source and target languages. Building upon the recent advances in CTC application, we develop an enhanced variant, BiL-CTC+, that establishes new state-of-the-art performances on the MuST-C ST benchmarks under resource-constrained scenarios. Intriguingly, our method also yields significant improvements in speech recognition performance, revealing the effect of cross-lingual learning on transcription and demonstrating its broad applicability. The source code is available at https://github.com/xuchennlp/S2T.
Prompt learning has emerged as an efficient and effective approach for transferring foundational Vision-Language Models (e.g., CLIP) to downstream tasks. However, current methods tend to overfit to seen categories, thereby limiting their generalization ability for unseen classes. In this paper, we propose a new method, Decoupled Prompt Learning (DPL), which reformulates the attention in prompt learning to alleviate this problem. Specifically, we theoretically investigate the collaborative process between prompts and instances (i.e., image patches/text tokens) by reformulating the original self-attention into four separate sub-processes. Through detailed analysis, we observe that certain sub-processes can be strengthened to bolster robustness and generalizability by some approximation techniques. Furthermore, we introduce language-conditioned textual prompting based on decoupled attention to naturally preserve the generalization of text input. Our approach is flexible for both visual and textual modalities, making it easily extendable to multi-modal prompt learning. By combining the proposed techniques, our approach achieves state-of-the-art performance on three representative benchmarks encompassing 15 image recognition datasets, while maintaining parameter-efficient. Moreover, our DPL does not rely on any auxiliary regularization task or extra training data, further demonstrating its remarkable generalization ability.
Multi-stakeholder recommender systems involve various roles, such as users, providers. Previous work pointed out that max-min fairness (MMF) is a better metric to support weak providers. However, when considering MMF, the features or parameters of these roles vary over time, how to ensure long-term provider MMF has become a significant challenge. We observed that recommendation feedback loops (named RFL) will influence the provider MMF greatly in the long term. RFL means that recommender system can only receive feedback on exposed items from users and update recommender models incrementally based on this feedback. When utilizing the feedback, the recommender model will regard unexposed item as negative. In this way, tail provider will not get the opportunity to be exposed, and its items will always be considered as negative samples. Such phenomenons will become more and more serious in RFL. To alleviate the problem, this paper proposes an online ranking model named Long-Term Provider Max-min Fairness (named LTP-MMF). Theoretical analysis shows that the long-term regret of LTP-MMF enjoys a sub-linear bound. Experimental results on three public recommendation benchmarks demonstrated that LTP-MMF can outperform the baselines in the long term.
Recently, speech-to-text translation has attracted more and more attention and many studies have emerged rapidly. In this paper, we present a comprehensive survey on direct speech translation aiming to summarize the current state-of-the-art techniques. First, we categorize the existing research work into three directions based on the main challenges -- modeling burden, data scarcity, and application issues. To tackle the problem of modeling burden, two main structures have been proposed, encoder-decoder framework (Transformer and the variants) and multitask frameworks. For the challenge of data scarcity, recent work resorts to many sophisticated techniques, such as data augmentation, pre-training, knowledge distillation, and multilingual modeling. We analyze and summarize the application issues, which include real-time, segmentation, named entity, gender bias, and code-switching. Finally, we discuss some promising directions for future work.