China Mobile Research Institute, Beijing, China
Abstract:Large Language Models (LLMs) are often English-centric due to the disproportionate distribution of languages in their pre-training data. Enhancing non-English language capabilities through post-pretraining often results in catastrophic forgetting of the ability of original languages. Previous methods either achieve good expansion with severe forgetting or slight forgetting with poor expansion, indicating the challenge of balancing language expansion while preventing forgetting. In this paper, we propose a method called MoE-LPR (Mixture-of-Experts with Language Priors Routing) to alleviate this problem. MoE-LPR employs a two-stage training approach to enhance the multilingual capability. First, the model is post-pretrained into a Mixture-of-Experts (MoE) architecture by upcycling, where all the original parameters are frozen and new experts are added. In this stage, we focus improving the ability on expanded languages, without using any original language data. Then, the model reviews the knowledge of the original languages with replay data amounting to less than 1% of post-pretraining, where we incorporate language priors routing to better recover the abilities of the original languages. Evaluations on multiple benchmarks show that MoE-LPR outperforms other post-pretraining methods. Freezing original parameters preserves original language knowledge while adding new experts preserves the learning ability. Reviewing with LPR enables effective utilization of multilingual knowledge within the parameters. Additionally, the MoE architecture maintains the same inference overhead while increasing total model parameters. Extensive experiments demonstrate MoE-LPR's effectiveness in improving expanded languages and preserving original language proficiency with superior scalability. Code and scripts are freely available at https://github.com/zjwang21/MoE-LPR.git.
Abstract:For speech classification tasks, deep learning models often achieve high accuracy but exhibit shortcomings in calibration, manifesting as classifiers exhibiting overconfidence. The significance of calibration lies in its critical role in guaranteeing the reliability of decision-making within deep learning systems. This study explores the effectiveness of Energy-Based Models in calibrating confidence for speech classification tasks by training a joint EBM integrating a discriminative and a generative model, thereby enhancing the classifiers calibration and mitigating overconfidence. Experimental evaluations conducted on three speech classification tasks specifically: age, emotion, and language recognition. Our findings highlight the competitive performance of EBMs in calibrating the speech classification models. This research emphasizes the potential of EBMs in speech classification tasks, demonstrating their ability to enhance calibration without sacrificing accuracy.
Abstract:The diverse nature of dialects presents challenges for models trained on specific linguistic patterns, rendering them susceptible to errors when confronted with unseen or out-of-distribution (OOD) data. This study introduces a novel margin-enhanced joint energy model (MEJEM) tailored specifically for OOD detection in dialects. By integrating a generative model and the energy margin loss, our approach aims to enhance the robustness of dialect identification systems. Furthermore, we explore two OOD scores for OOD dialect detection, and our findings conclusively demonstrate that the energy score outperforms the softmax score. Leveraging Sharpness-Aware Minimization to optimize the training process of the joint model, we enhance model generalization by minimizing both loss and sharpness. Experiments conducted on dialect identification tasks validate the efficacy of Energy-Based Models and provide valuable insights into their performance.
Abstract:Large Language Models have demonstrated impressive reasoning capabilities across multiple languages. However, the relationship between capabilities in different languages is less explored. In this work, we decompose the process of reasoning tasks into two separated parts: knowledge retrieval and knowledge-free reasoning, and analyze the cross-lingual transferability of them. With adapted and constructed knowledge-free reasoning datasets, we show that the knowledge-free reasoning capability can be nearly perfectly transferred across various source-target language directions despite the secondary impact of resource in some specific target languages, while cross-lingual knowledge retrieval significantly hinders the transfer. Moreover, by analyzing the hidden states and feed-forward network neuron activation during the reasoning tasks, we show that higher similarity of hidden representations and larger overlap of activated neurons could explain the better cross-lingual transferability of knowledge-free reasoning than knowledge retrieval. Thus, we hypothesize that knowledge-free reasoning embeds in some language-shared mechanism, while knowledge is stored separately in different languages.
Abstract:Noisy labels are inevitable, even in well-annotated datasets. The detection of noisy labels is of significant importance to enhance the robustness of speaker recognition models. In this paper, we propose a novel noisy label detection approach based on two new statistical metrics: Continuous Inconsistent Counting (CIC) and Total Inconsistent Counting (TIC). These metrics are calculated through Cross-Epoch Counting (CEC) and correspond to the early and late stages of training, respectively. Additionally, we categorize samples based on their prediction results into three categories: inconsistent samples, hard samples, and easy samples. During training, we gradually increase the difficulty of hard samples to update model parameters, preventing noisy labels from being overfitted. Compared to contrastive schemes, our approach not only achieves the best performance in speaker verification but also excels in noisy label detection.
Abstract:Recently, there have been attempts to integrate various speech processing tasks into a unified model. However, few previous works directly demonstrated that joint optimization of diverse tasks in multitask speech models has positive influence on the performance of individual tasks. In this paper we present a multitask speech model -- PolySpeech, which supports speech recognition, speech synthesis, and two speech classification tasks. PolySpeech takes multi-modal language model as its core structure and uses semantic representations as speech inputs. We introduce semantic speech embedding tokenization and speech reconstruction methods to PolySpeech, enabling efficient generation of high-quality speech for any given speaker. PolySpeech shows competitiveness across various tasks compared to single-task models. In our experiments, multitask optimization achieves performance comparable to single-task optimization and is especially beneficial for specific tasks.
Abstract:The integration of multimodal Electronic Health Records (EHR) data has notably advanced clinical predictive capabilities. However, current models that utilize clinical notes and multivariate time-series EHR data often lack the necessary medical context for precise clinical tasks. Previous methods using knowledge graphs (KGs) primarily focus on structured knowledge extraction. To address this, we propose EMERGE, a Retrieval-Augmented Generation (RAG) driven framework aimed at enhancing multimodal EHR predictive modeling. Our approach extracts entities from both time-series data and clinical notes by prompting Large Language Models (LLMs) and aligns them with professional PrimeKG to ensure consistency. Beyond triplet relationships, we include entities' definitions and descriptions to provide richer semantics. The extracted knowledge is then used to generate task-relevant summaries of patients' health statuses. These summaries are fused with other modalities utilizing an adaptive multimodal fusion network with cross-attention. Extensive experiments on the MIMIC-III and MIMIC-IV datasets for in-hospital mortality and 30-day readmission tasks demonstrate the superior performance of the EMERGE framework compared to baseline models. Comprehensive ablation studies and analyses underscore the efficacy of each designed module and the framework's robustness to data sparsity. EMERGE significantly enhances the use of multimodal EHR data in healthcare, bridging the gap with nuanced medical contexts crucial for informed clinical predictions.
Abstract:Recently, Large Language Models (LLMs) have shown impressive language capabilities. However, most of the existing LLMs are all English-centric, which have very unstable and unbalanced performance across different languages. Multilingual alignment is an effective method to enhance the LLMs' multilingual capabilities. In this work, we explore the multilingual alignment paradigm which utilizes translation data and comprehensively investigate the spontaneous multilingual improvement of LLMs. We find that LLMs only instruction-tuned on question translation data without annotated answers are able to get significant multilingual performance enhancement even across a wide range of languages unseen during instruction-tuning. Additionally, we utilize different settings and mechanistic interpretability methods to comprehensively analyze the LLM's performance in the multilingual scenario.
Abstract:The 2nd FutureDial Challenge: Dialog Systems with Retrieval Augmented Generation (FutureDial-RAG), Co-located with SLT 2024
Abstract:Transformer has become one of the most popular architectures for multivariate time series (MTS) forecasting. Recent Transformer-based MTS models generally prefer channel-independent structures with the observation that channel independence can alleviate noise and distribution drift issues, leading to more robustness. Nevertheless, it is essential to note that channel dependency remains an inherent characteristic of MTS, carrying valuable information. Designing a model that incorporates merits of both channel-independent and channel-mixing structures is a key to further improvement of MTS forecasting, which poses a challenging conundrum. To address the problem, an injection method for global information into channel-independent Transformer, InjectTST, is proposed in this paper. Instead of designing a channel-mixing model directly, we retain the channel-independent backbone and gradually inject global information into individual channels in a selective way. A channel identifier, a global mixing module and a self-contextual attention module are devised in InjectTST. The channel identifier can help Transformer distinguish channels for better representation. The global mixing module produces cross-channel global information. Through the self-contextual attention module, the independent channels can selectively concentrate on useful global information without robustness degradation, and channel mixing is achieved implicitly. Experiments indicate that InjectTST can achieve stable improvement compared with state-of-the-art models.