This article investigates the application of pinching-antenna systems (PASS) in multiuser multiple-input single-output (MISO) communications. Two sum-rate maximization problems are formulated under minimum mean square error (MMSE) decoding, with and without successive interference cancellation (SIC). To address the joint optimization of pinching antenna locations and user transmit powers, a fractional programming-based approach is proposed. Numerical results validate the effectiveness of the proposed method and show that PASS can significantly enhance uplink sum-rate performance compared to conventional fixed-antenna designs.