Abstract:Modern robot navigation systems encounter difficulties in diverse and complex indoor environments. Traditional approaches rely on multiple modules with small models or rule-based systems and thus lack adaptability to new environments. To address this, we developed Astra, a comprehensive dual-model architecture, Astra-Global and Astra-Local, for mobile robot navigation. Astra-Global, a multimodal LLM, processes vision and language inputs to perform self and goal localization using a hybrid topological-semantic graph as the global map, and outperforms traditional visual place recognition methods. Astra-Local, a multitask network, handles local path planning and odometry estimation. Its 4D spatial-temporal encoder, trained through self-supervised learning, generates robust 4D features for downstream tasks. The planning head utilizes flow matching and a novel masked ESDF loss to minimize collision risks for generating local trajectories, and the odometry head integrates multi-sensor inputs via a transformer encoder to predict the relative pose of the robot. Deployed on real in-house mobile robots, Astra achieves high end-to-end mission success rate across diverse indoor environments.
Abstract:A fundamental challenge in car-following modeling lies in accurately representing the multi-scale complexity of driving behaviors, particularly the intra-driver heterogeneity where a single driver's actions fluctuate dynamically under varying conditions. While existing models, both conventional and data-driven, address behavioral heterogeneity to some extent, they often emphasize inter-driver heterogeneity or rely on simplified assumptions, limiting their ability to capture the dynamic heterogeneity of a single driver under different driving conditions. To address this gap, we propose a novel data-driven car-following framework that systematically embeds discrete driving regimes (e.g., steady-state following, acceleration, cruising) into vehicular motion predictions. Leveraging high-resolution traffic trajectory datasets, the proposed hybrid deep learning architecture combines Gated Recurrent Units for discrete driving regime classification with Long Short-Term Memory networks for continuous kinematic prediction, unifying discrete decision-making processes and continuous vehicular dynamics to comprehensively represent inter- and intra-driver heterogeneity. Driving regimes are identified using a bottom-up segmentation algorithm and Dynamic Time Warping, ensuring robust characterization of behavioral states across diverse traffic scenarios. Comparative analyses demonstrate that the framework significantly reduces prediction errors for acceleration (maximum MSE improvement reached 58.47\%), speed, and spacing metrics while reproducing critical traffic phenomena, such as stop-and-go wave propagation and oscillatory dynamics.
Abstract:We introduce MedAgentGYM, the first publicly available training environment designed to enhance coding-based medical reasoning capabilities in large language model (LLM) agents. MedAgentGYM comprises 72,413 task instances across 129 categories derived from authentic real-world biomedical scenarios. Tasks are encapsulated within executable coding environments, each featuring detailed task descriptions, interactive feedback mechanisms, verifiable ground-truth annotations, and scalable training trajectory generation. Extensive benchmarking of over 30 LLMs reveals a notable performance disparity between commercial API-based models and open-source counterparts. Leveraging MedAgentGYM, Med-Copilot-7B achieves substantial performance gains through supervised fine-tuning (+36.44%) and continued reinforcement learning (+42.47%), emerging as an affordable and privacy-preserving alternative competitive with gpt-4o. By offering both a comprehensive benchmark and accessible, expandable training resources within unified execution environments, MedAgentGYM delivers an integrated platform to develop LLM-based coding assistants for advanced biomedical research and practice.
Abstract:Open-Ended object Detection (OED) is a novel and challenging task that detects objects and generates their category names in a free-form manner, without requiring additional vocabularies during inference. However, the existing OED models, such as GenerateU, require large-scale datasets for training, suffer from slow convergence, and exhibit limited performance. To address these issues, we present a novel and efficient Open-Det framework, consisting of four collaborative parts. Specifically, Open-Det accelerates model training in both the bounding box and object name generation process by reconstructing the Object Detector and the Object Name Generator. To bridge the semantic gap between Vision and Language modalities, we propose a Vision-Language Aligner with V-to-L and L-to-V alignment mechanisms, incorporating with the Prompts Distiller to transfer knowledge from the VLM into VL-prompts, enabling accurate object name generation for the LLM. In addition, we design a Masked Alignment Loss to eliminate contradictory supervision and introduce a Joint Loss to enhance classification, resulting in more efficient training. Compared to GenerateU, Open-Det, using only 1.5% of the training data (0.077M vs. 5.077M), 20.8% of the training epochs (31 vs. 149), and fewer GPU resources (4 V100 vs. 16 A100), achieves even higher performance (+1.0% in APr). The source codes are available at: https://github.com/Med-Process/Open-Det.
Abstract:Top-$k$ decoding is a widely used method for sampling from LLMs: at each token, only the largest $k$ next-token-probabilities are kept, and the next token is sampled after re-normalizing them to sum to unity. Top-$k$ and other sampling methods are motivated by the intuition that true next-token distributions are sparse, and the noisy LLM probabilities need to be truncated. However, to our knowledge, a precise theoretical motivation for the use of top-$k$ decoding is missing. In this work, we develop a theoretical framework that both explains and generalizes top-$k$ decoding. We view decoding at a fixed token as the recovery of a sparse probability distribution. We consider \emph{Bregman decoders} obtained by minimizing a separable Bregman divergence (for both the \emph{primal} and \emph{dual} cases) with a sparsity-inducing $\ell_0$ regularization. Despite the combinatorial nature of the objective, we show how to optimize it efficiently for a large class of divergences. We show that the optimal decoding strategies are greedy, and further that the loss function is discretely convex in $k$, so that binary search provably and efficiently finds the optimal $k$. We show that top-$k$ decoding arises as a special case for the KL divergence, and identify new decoding strategies that have distinct behaviors (e.g., non-linearly up-weighting larger probabilities after re-normalization).
Abstract:Modern policy gradient algorithms, such as TRPO and PPO, outperform vanilla policy gradient in many RL tasks. Questioning the common belief that enforcing approximate trust regions leads to steady policy improvement in practice, we show that the more critical factor is the enhanced value estimation accuracy from more value update steps in each iteration. To demonstrate, we show that by simply increasing the number of value update steps per iteration, vanilla policy gradient itself can achieve performance comparable to or better than PPO in all the standard continuous control benchmark environments. Importantly, this simple change to vanilla policy gradient is significantly more robust to hyperparameter choices, opening up the possibility that RL algorithms may still become more effective and easier to use.
Abstract:While humans effortlessly draw visual objects and shapes by adaptively allocating attention based on their complexity, existing multimodal large language models (MLLMs) remain constrained by rigid token representations. Bridging this gap, we propose ALTo, an adaptive length tokenizer for autoregressive mask generation. To achieve this, a novel token length predictor is designed, along with a length regularization term and a differentiable token chunking strategy. We further build ALToLLM that seamlessly integrates ALTo into MLLM. Preferences on the trade-offs between mask quality and efficiency is implemented by group relative policy optimization (GRPO). Experiments demonstrate that ALToLLM achieves state-of-the-art performance with adaptive token cost on popular segmentation benchmarks. Code and models are released at https://github.com/yayafengzi/ALToLLM.
Abstract:Multimodal Information Extraction (MIE) has gained attention for extracting structured information from multimedia sources. Traditional methods tackle MIE tasks separately, missing opportunities to share knowledge across tasks. Recent approaches unify these tasks into a generation problem using instruction-based T5 models with visual adaptors, optimized through full-parameter fine-tuning. However, this method is computationally intensive, and multi-task fine-tuning often faces gradient conflicts, limiting performance. To address these challenges, we propose collaborative multi-LoRA experts with achievement-based multi-task loss (C-LoRAE) for MIE tasks. C-LoRAE extends the low-rank adaptation (LoRA) method by incorporating a universal expert to learn shared multimodal knowledge from cross-MIE tasks and task-specific experts to learn specialized instructional task features. This configuration enhances the model's generalization ability across multiple tasks while maintaining the independence of various instruction tasks and mitigating gradient conflicts. Additionally, we propose an achievement-based multi-task loss to balance training progress across tasks, addressing the imbalance caused by varying numbers of training samples in MIE tasks. Experimental results on seven benchmark datasets across three key MIE tasks demonstrate that C-LoRAE achieves superior overall performance compared to traditional fine-tuning methods and LoRA methods while utilizing a comparable number of training parameters to LoRA.
Abstract:Quantization Aware Training (QAT) is a neural network quantization technique that compresses model size and improves operational efficiency while effectively maintaining model performance. The paradigm of QAT is to introduce fake quantization operators during the training process, allowing the model to autonomously compensate for information loss caused by quantization. Making quantization parameters trainable can significantly improve the performance of QAT, but at the cost of compromising the flexibility during inference, especially when dealing with activation values with substantially different distributions. In this paper, we propose an effective learnable adaptive neural network quantization method, called Adaptive Step Size Quantization (ASQ), to resolve this conflict. Specifically, the proposed ASQ method first dynamically adjusts quantization scaling factors through a trained module capable of accommodating different activations. Then, to address the rigid resolution issue inherent in Power of Two (POT) quantization, we propose an efficient non-uniform quantization scheme. We utilize the Power Of Square root of Two (POST) as the basis for exponential quantization, effectively handling the bell-shaped distribution of neural network weights across various bit-widths while maintaining computational efficiency through a Look-Up Table method (LUT). Extensive experimental results demonstrate that the proposed ASQ method is superior to the state-of-the-art QAT approaches. Notably that the ASQ is even competitive compared to full precision baselines, with its 4-bit quantized ResNet34 model improving accuracy by 1.2\% on ImageNet.
Abstract:Recent advances in unsupervised anomaly detection (UAD) have shifted from single-class to multi-class scenarios. In such complex contexts, the increasing pattern diversity has brought two challenges to reconstruction-based approaches: (1) over-generalization: anomalies that are subtle or share compositional similarities with normal patterns may be reconstructed with high fidelity, making them difficult to distinguish from normal instances; and (2) insufficient normality reconstruction: complex normal features, such as intricate textures or fine-grained structures, may not be faithfully reconstructed due to the model's limited representational capacity, resulting in false positives. Existing methods typically focus on addressing the former, which unintentionally exacerbate the latter, resulting in inadequate representation of intricate normal patterns. To concurrently address these two challenges, we propose a Memory-augmented Dual-Decoder Networks (MDD-Net). This network includes two critical components: a Dual-Decoder Reverse Distillation Network (DRD-Net) and a Class-aware Memory Module (CMM). Specifically, the DRD-Net incorporates a restoration decoder designed to recover normal features from synthetic abnormal inputs and an identity decoder to reconstruct features that maintain the anomalous semantics. By exploiting the discrepancy between features produced by two decoders, our approach refines anomaly scores beyond the conventional encoder-decoder comparison paradigm, effectively reducing false positives and enhancing localization accuracy. Furthermore, the CMM explicitly encodes and preserves class-specific normal prototypes, actively steering the network away from anomaly reconstruction. Comprehensive experimental results across several benchmarks demonstrate the superior performance of our MDD-Net framework over current SoTA approaches in multi-class UAD tasks.