Spiking Neural Networks (SNNs) are well known as a promising energy-efficient alternative to conventional artificial neural networks. Subject to the preconceived impression that SNNs are sparse firing, the analysis and optimization of inherent redundancy in SNNs have been largely overlooked, thus the potential advantages of spike-based neuromorphic computing in accuracy and energy efficiency are interfered. In this work, we pose and focus on three key questions regarding the inherent redundancy in SNNs. We argue that the redundancy is induced by the spatio-temporal invariance of SNNs, which enhances the efficiency of parameter utilization but also invites lots of noise spikes. Further, we analyze the effect of spatio-temporal invariance on the spatio-temporal dynamics and spike firing of SNNs. Then, motivated by these analyses, we propose an Advance Spatial Attention (ASA) module to harness SNNs' redundancy, which can adaptively optimize their membrane potential distribution by a pair of individual spatial attention sub-modules. In this way, noise spike features are accurately regulated. Experimental results demonstrate that the proposed method can significantly drop the spike firing with better performance than state-of-the-art SNN baselines. Our code is available in \url{https://github.com/BICLab/ASA-SNN}.
Spiking neural networks (SNNs) are brain-inspired energy-efficient models that encode information in spatiotemporal dynamics. Recently, deep SNNs trained directly have shown great success in achieving high performance on classification tasks with very few time steps. However, how to design a directly-trained SNN for the regression task of object detection still remains a challenging problem. To address this problem, we propose EMS-YOLO, a novel directly-trained SNN framework for object detection, which is the first trial to train a deep SNN with surrogate gradients for object detection rather than ANN-SNN conversion strategies. Specifically, we design a full-spike residual block, EMS-ResNet, which can effectively extend the depth of the directly-trained SNN with low power consumption. Furthermore, we theoretically analyze and prove the EMS-ResNet could avoid gradient vanishing or exploding. The results demonstrate that our approach outperforms the state-of-the-art ANN-SNN conversion methods (at least 500 time steps) in extremely fewer time steps (only 4 time steps). It is shown that our model could achieve comparable performance to the ANN with the same architecture while consuming 5.83 times less energy on the frame-based COCO Dataset and the event-based Gen1 Dataset.
In this paper, we consider the channel modeling of a heterogeneous vehicular integrated sensing and communication (ISAC) system, where a dual-functional multi-antenna base station (BS) intends to communicate with a multi-antenna vehicular receiver (MR) and sense the surrounding environments simultaneously. The time-varying complex channel impulse responses (CIRs) of the sensing and communication channels are derived, respectively, in which the sensing and communication channels are correlated with shared clusters. The proposed models show great generality for the capability in covering both monostatic and bistatic sensing scenarios, and as well for considering both static clusters/targets and mobile clusters/targets. Important channel statistical characteristics, including time-varying spatial cross-correlation function (CCF) and temporal auto-correlation function (ACF), are derived and analyzed. Numerically results are provided to show the propagation characteristics of the proposed ISAC channel model. Finally, the proposed model is validated via the agreement between theoretical and simulated as well as measurement results.
Due to limited resources on edge and different characteristics of deep neural network (DNN) models, it is a big challenge to optimize DNN inference performance in terms of energy consumption and end-to-end latency on edge devices. In addition to the dynamic voltage frequency scaling (DVFS) technique, the edge-cloud architecture provides a collaborative approach for efficient DNN inference. However, current edge-cloud collaborative inference methods have not optimized various compute resources on edge devices. Thus, we propose DVFO, a novel DVFS-enabled edge-cloud collaborative inference framework, which co-optimizes DVFS and offloading parameters via deep reinforcement learning (DRL). Specifically, DVFO automatically co-optimizes 1) the CPU, GPU and memory frequencies of edge devices, and 2) the feature maps to be offloaded to cloud servers. In addition, it leverages a thinking-while-moving concurrent mechanism to accelerate the DRL learning process, and a spatial-channel attention mechanism to extract DNN feature maps of secondary importance for workload offloading. This approach improves inference performance for different DNN models under various edge-cloud network conditions. Extensive evaluations using two datasets and six widely-deployed DNN models on three heterogeneous edge devices show that DVFO significantly reduces the energy consumption by 33% on average, compared to state-of-the-art schemes. Moreover, DVFO achieves up to 28.6%-59.1% end-to-end latency reduction, while maintaining accuracy within 1% loss on average.
As deep neural networks (DNNs) are being applied to a wide range of edge intelligent applications, it is critical for edge inference platforms to have both high-throughput and low-latency at the same time. Such edge platforms with multiple DNN models pose new challenges for scheduler designs. First, each request may have different service level objectives (SLOs) to improve quality of service (QoS). Second, the edge platforms should be able to efficiently schedule multiple heterogeneous DNN models so that system utilization can be improved. To meet these two goals, this paper proposes BCEdge, a novel learning-based scheduling framework that takes adaptive batching and concurrent execution of DNN inference services on edge platforms. We define a utility function to evaluate the trade-off between throughput and latency. The scheduler in BCEdge leverages maximum entropy-based deep reinforcement learning (DRL) to maximize utility by 1) co-optimizing batch size and 2) the number of concurrent models automatically. Our prototype implemented on different edge platforms shows that the proposed BCEdge enhances utility by up to 37.6% on average, compared to state-of-the-art solutions, while satisfying SLOs.
In this paper, we present our solutions for the 5th Workshop and Competition on Affective Behavior Analysis in-the-wild (ABAW), which includes four sub-challenges of Valence-Arousal (VA) Estimation, Expression (Expr) Classification, Action Unit (AU) Detection and Emotional Reaction Intensity (ERI) Estimation. The 5th ABAW competition focuses on facial affect recognition utilizing different modalities and datasets. In our work, we extract powerful audio and visual features using a large number of sota models. These features are fused by Transformer Encoder and TEMMA. Besides, to avoid the possible impact of large dimensional differences between various features, we design an Affine Module to align different features to the same dimension. Extensive experiments demonstrate that the superiority of the proposed method. For the VA Estimation sub-challenge, our method obtains the mean Concordance Correlation Coefficient (CCC) of 0.6066. For the Expression Classification sub-challenge, the average F1 Score is 0.4055. For the AU Detection sub-challenge, the average F1 Score is 0.5296. For the Emotional Reaction Intensity Estimation sub-challenge, the average pearson's correlations coefficient on the validation set is 0.3968. All of the results of four sub-challenges outperform the baseline with a large margin.
Event-based cameras are bio-inspired sensors that capture brightness change of every pixel in an asynchronous manner. Compared with frame-based sensors, event cameras have microsecond-level latency and high dynamic range, hence showing great potential for object detection under high-speed motion and poor illumination conditions. Due to sparsity and asynchronism nature with event streams, most of existing approaches resort to hand-crafted methods to convert event data into 2D grid representation. However, they are sub-optimal in aggregating information from event stream for object detection. In this work, we propose to learn an event representation optimized for event-based object detection. Specifically, event streams are divided into grids in the x-y-t coordinates for both positive and negative polarity, producing a set of pillars as 3D tensor representation. To fully exploit information with event streams to detect objects, a dual-memory aggregation network (DMANet) is proposed to leverage both long and short memory along event streams to aggregate effective information for object detection. Long memory is encoded in the hidden state of adaptive convLSTMs while short memory is modeled by computing spatial-temporal correlation between event pillars at neighboring time intervals. Extensive experiments on the recently released event-based automotive detection dataset demonstrate the effectiveness of the proposed method.
Open radio access network (ORAN) provides an open architecture to implement radio access network (RAN) of the fifth generation (5G) and beyond mobile communications. As a key technology for the evolution to the sixth generation (6G) systems, cell-free massive multiple-input multiple-output (CF-mMIMO) can effectively improve the spectrum efficiency, peak rate and reliability of wireless communication systems. Starting from scalable implementation of CF-mMIMO, we study a cell-free RAN (CF-RAN) under the ORAN architecture. Through theoretical analysis and numerical simulation, we investigate the uplink and downlink spectral efficiencies of CF-mMIMO with the new architecture. We then discuss the implementation issues of CF-RAN under ORAN architecture, including time-frequency synchronization and over-the-air reciprocity calibration, low layer splitting, deployment of ORAN radio units (O-RU), artificial intelligent based user associations. Finally, we present some representative experimental results for the uplink distributed reception and downlink coherent joint transmission of CF-RAN with commercial off-the-shelf O-RUs.