Abstract:Neuroscience and artificial intelligence represent distinct yet complementary pathways to general intelligence. However, amid the ongoing boom in AI research and applications, the translational synergy between these two fields has grown increasingly elusive-hampered by a widening infrastructural incompatibility: modern AI frameworks lack native support for biophysical realism, while neural simulation tools are poorly suited for gradient-based optimization and neuromorphic hardware deployment. To bridge this gap, we introduce BrainFuse, a unified infrastructure that provides comprehensive support for biophysical neural simulation and gradient-based learning. By addressing algorithmic, computational, and deployment challenges, BrainFuse exhibits three core capabilities: (1) algorithmic integration of detailed neuronal dynamics into a differentiable learning framework; (2) system-level optimization that accelerates customizable ion-channel dynamics by up to 3,000x on GPUs; and (3) scalable computation with highly compatible pipelines for neuromorphic hardware deployment. We demonstrate this full-stack design through both AI and neuroscience tasks, from foundational neuron simulation and functional cylinder modeling to real-world deployment and application scenarios. For neuroscience, BrainFuse supports multiscale biological modeling, enabling the deployment of approximately 38,000 Hodgkin-Huxley neurons with 100 million synapses on a single neuromorphic chip while consuming as low as 1.98 W. For AI, BrainFuse facilitates the synergistic application of realistic biological neuron models, demonstrating enhanced robustness to input noise and improved temporal processing endowed by complex HH dynamics. BrainFuse therefore serves as a foundational engine to facilitate cross-disciplinary research and accelerate the development of next-generation bio-inspired intelligent systems.
Abstract:This paper proposes LiNUS, a lightweight deep learning framework for the automatic segmentation of the Subthalamic Nucleus (STN) in Deep Brain Stimulation (DBS) surgery. Addressing the challenges of small target volume and class imbalance in MRI data, LiNUS improves upon the U-Net architecture by introducing spectral normalization constraints, bilinear interpolation upsampling, and a multi-scale feature fusion mechanism. Experimental results on the Tsinghua DBS dataset (TT14) demonstrate that LiNUS achieves a Dice coefficient of 0.679 with an inference time of only 0.05 seconds per subject, significantly outperforming traditional manual and registration-based methods. Further validation on high-resolution data confirms the model's robustness, achieving a Dice score of 0.89. A dedicated Graphical User Interface (GUI) was also developed to facilitate real-time clinical application.
Abstract:The evolution of Large Language Models (LLMs) into autonomous agents has expanded the scope of AI coding from localized code generation to complex, repository-level, and execution-driven problem solving. However, current benchmarks predominantly evaluate code logic in static contexts, neglecting the dynamic, full-process requirements of real-world engineering, particularly in backend development which demands rigorous environment configuration and service deployment. To address this gap, we introduce ABC-Bench, a benchmark explicitly designed to evaluate agentic backend coding within a realistic, executable workflow. Using a scalable automated pipeline, we curated 224 practical tasks spanning 8 languages and 19 frameworks from open-source repositories. Distinct from previous evaluations, ABC-Bench require the agents to manage the entire development lifecycle from repository exploration to instantiating containerized services and pass the external end-to-end API tests. Our extensive evaluation reveals that even state-of-the-art models struggle to deliver reliable performance on these holistic tasks, highlighting a substantial disparity between current model capabilities and the demands of practical backend engineering. Our code is available at https://github.com/OpenMOSS/ABC-Bench.
Abstract:While LLM-based agents have shown promise for deep research, most existing approaches rely on fixed workflows that struggle to adapt to real-world, open-ended queries. Recent work therefore explores self-evolution by allowing agents to rewrite their own code or prompts to improve problem-solving ability, but unconstrained optimization often triggers instability, hallucinations, and instruction drift. We propose EvoFSM, a structured self-evolving framework that achieves both adaptability and control by evolving an explicit Finite State Machine (FSM) instead of relying on free-form rewriting. EvoFSM decouples the optimization space into macroscopic Flow (state-transition logic) and microscopic Skill (state-specific behaviors), enabling targeted improvements under clear behavioral boundaries. Guided by a critic mechanism, EvoFSM refines the FSM through a small set of constrained operations, and further incorporates a self-evolving memory that distills successful trajectories as reusable priors and failure patterns as constraints for future queries. Extensive evaluations on five multi-hop QA benchmarks demonstrate the effectiveness of EvoFSM. In particular, EvoFSM reaches 58.0% accuracy on the DeepSearch benchmark. Additional results on interactive decision-making tasks further validate its generalization.
Abstract:While autonomous software engineering (SWE) agents are reshaping programming paradigms, they currently suffer from a "closed-world" limitation: they attempt to fix bugs from scratch or solely using local context, ignoring the immense historical human experience available on platforms like GitHub. Accessing this open-world experience is hindered by the unstructured and fragmented nature of real-world issue-tracking data. In this paper, we introduce MemGovern, a framework designed to govern and transform raw GitHub data into actionable experiential memory for agents. MemGovern employs experience governance to convert human experience into agent-friendly experience cards and introduces an agentic experience search strategy that enables logic-driven retrieval of human expertise. By producing 135K governed experience cards, MemGovern achieves a significant performance boost, improving resolution rates on the SWE-bench Verified by 4.65%. As a plug-in approach, MemGovern provides a solution for agent-friendly memory infrastructure.
Abstract:With the rise of the Agent Web and Model Context Protocol (MCP), the agent ecosystem is evolving into an open collaborative network, exponentially increasing accessible tools. However, current architectures face severe scalability and generality bottlenecks. To address this, we propose ToolACE-MCP, a pipeline for training history-aware routers to empower precise navigation in large-scale ecosystems. By leveraging a dependency-rich candidate Graph to synthesize multi-turn trajectories, we effectively train routers with dynamic context understanding to create the plug-and-play Light Routing Agent. Experiments on the real-world benchmarks MCP-Universe and MCP-Mark demonstrate superior performance. Notably, ToolACE-MCP exhibits critical properties for the future Agent Web: it not only generalizes to multi-agent collaboration with minimal adaptation but also maintains exceptional robustness against noise and scales effectively to massive candidate spaces. These findings provide a strong empirical foundation for universal orchestration in open-ended ecosystems.
Abstract:Self-evolution methods enhance code generation through iterative "generate-verify-refine" cycles, yet existing approaches suffer from low exploration efficiency, failing to discover solutions with superior complexity within limited budgets. This inefficiency stems from initialization bias trapping evolution in poor solution regions, uncontrolled stochastic operations lacking feedback guidance, and insufficient experience utilization across tasks. To address these bottlenecks, we propose Controlled Self-Evolution (CSE), which consists of three key components. Diversified Planning Initialization generates structurally distinct algorithmic strategies for broad solution space coverage. Genetic Evolution replaces stochastic operations with feedback-guided mechanisms, enabling targeted mutation and compositional crossover. Hierarchical Evolution Memory captures both successful and failed experiences at inter-task and intra-task levels. Experiments on EffiBench-X demonstrate that CSE consistently outperforms all baselines across various LLM backbones. Furthermore, CSE achieves higher efficiency from early generations and maintains continuous improvement throughout evolution. Our code is publicly available at https://github.com/QuantaAlpha/EvoControl.
Abstract:In real-world video question answering scenarios, videos often provide only localized visual cues, while verifiable answers are distributed across the open web; models therefore need to jointly perform cross-frame clue extraction, iterative retrieval, and multi-hop reasoning-based verification. To bridge this gap, we construct the first video deep research benchmark, VideoDR. VideoDR centers on video-conditioned open-domain video question answering, requiring cross-frame visual anchor extraction, interactive web retrieval, and multi-hop reasoning over joint video-web evidence; through rigorous human annotation and quality control, we obtain high-quality video deep research samples spanning six semantic domains. We evaluate multiple closed-source and open-source multimodal large language models under both the Workflow and Agentic paradigms, and the results show that Agentic is not consistently superior to Workflow: its gains depend on a model's ability to maintain the initial video anchors over long retrieval chains. Further analysis indicates that goal drift and long-horizon consistency are the core bottlenecks. In sum, VideoDR provides a systematic benchmark for studying video agents in open-web settings and reveals the key challenges for next-generation video deep research agents.
Abstract:Existing long-horizon memory benchmarks mostly use multi-turn dialogues or synthetic user histories, which makes retrieval performance an imperfect proxy for person understanding. We present \BenchName, a publicly releasable benchmark built from long-form autobiographical narratives, where actions, context, and inner thoughts provide dense evidence for inferring stable motivations and decision principles. \BenchName~reconstructs each narrative into a flashback-aware, time-anchored stream and evaluates models with evidence-linked questions spanning factual recall, subjective state attribution, and principle-level reasoning. Across diverse narrative sources, retrieval-augmented systems mainly improve factual accuracy, while errors persist on temporally grounded explanations and higher-level inferences, highlighting the need for memory mechanisms beyond retrieval. Our data is in \href{KnowMeBench}{https://github.com/QuantaAlpha/KnowMeBench}.
Abstract:Pull request (PR) review is essential for ensuring software quality, yet automating this task remains challenging due to noisy supervision, limited contextual understanding, and inadequate evaluation metrics. We present Sphinx, a unified framework for LLM-based PR review that addresses these limitations through three key components: (1) a structured data generation pipeline that produces context-rich, semantically grounded review comments by comparing pseudo-modified and merged code; (2) a checklist-based evaluation benchmark that assesses review quality based on structured coverage of actionable verification points, moving beyond surface-level metrics like BLEU; and (3) Checklist Reward Policy Optimization (CRPO), a novel training paradigm that uses rule-based, interpretable rewards to align model behavior with real-world review practices. Extensive experiments show that models trained with Sphinx achieve state-of-the-art performance on review completeness and precision, outperforming both proprietary and open-source baselines by up to 40\% in checklist coverage. Together, Sphinx enables the development of PR review models that are not only fluent but also context-aware, technically precise, and practically deployable in real-world development workflows. The data will be released after review.