University of California San Diego, USA
Abstract:In-band full-duplex (IBFD) systems are expected to double the spectral efficiency compared to half-duplex systems, provided that loopback self-interference (SI) can be effectively suppressed. The inherent interference mitigation capabilities of the emerging fluid antenna system (FAS) technology make it a promising candidate for addressing the SI challenge in IBFD systems. This paper thus proposes a FAS-assisted self-interference cancellation (SIC) framework, which leverages a receiver-side FAS to dynamically select an interference-free port. Analytical results include a lower bound and an approximation of the residual SI (RSI) power, both derived for rich-scattering channels by considering the joint spatial correlation amongst the FAS ports. Simulations of RSI power and forward link rates validate the analysis, showing that the SIC performance improves with the number of FAS ports. Additionally, simulations under practical conditions, such as finite-scattering environments and wideband integrated access and backhaul (IAB) channels, reveal that the proposed approach offers superior SIC capability and significant forward rate gains over conventional IBFD SIC schemes.
Abstract:3D Gaussian Splatting (3DGS) has gained popularity for its fast and high-quality rendering, but it has a very large memory footprint incurring high transmission and storage overhead. Recently, some neural compression methods, such as Scaffold-GS, were proposed for 3DGS but they did not adopt the approach of end-to-end optimized analysis-synthesis transforms which has been proven highly effective in neural signal compression. Without an appropriate analysis transform, signal correlations cannot be removed by sparse representation. Without such transforms the only way to remove signal redundancies is through entropy coding driven by a complex and expensive context modeling, which results in slower speed and suboptimal rate-distortion (R-D) performance. To overcome this weakness, we propose Sparsity-guided Hierarchical Transform Coding (SHTC), the first end-to-end optimized transform coding framework for 3DGS compression. SHTC jointly optimizes the 3DGS, transforms and a lightweight context model. This joint optimization enables the transform to produce representations that approach the best R-D performance possible. The SHTC framework consists of a base layer using KLT for data decorrelation, and a sparsity-coded enhancement layer that compresses the KLT residuals to refine the representation. The enhancement encoder learns a linear transform to project high-dimensional inputs into a low-dimensional space, while the decoder unfolds the Iterative Shrinkage-Thresholding Algorithm (ISTA) to reconstruct the residuals. All components are designed to be interpretable, allowing the incorporation of signal priors and fewer parameters than black-box transforms. This novel design significantly improves R-D performance with minimal additional parameters and computational overhead.
Abstract:Multirotors are usually desired to enter confined narrow tunnels that are barely accessible to humans in various applications including inspection, search and rescue, and so on. This task is extremely challenging since the lack of geometric features and illuminations, together with the limited field of view, cause problems in perception; the restricted space and significant ego airflow disturbances induce control issues. This paper introduces an autonomous aerial system designed for navigation through tunnels as narrow as 0.5 m in diameter. The real-time and online system includes a virtual omni-directional perception module tailored for the mission and a novel motion planner that incorporates perception and ego airflow disturbance factors modeled using camera projections and computational fluid dynamics analyses, respectively. Extensive flight experiments on a custom-designed quadrotor are conducted in multiple realistic narrow tunnels to validate the superior performance of the system, even over human pilots, proving its potential for real applications. Additionally, a deployment pipeline on other multirotor platforms is outlined and open-source packages are provided for future developments.
Abstract:Mathematical reasoning presents a significant challenge for Large Language Models (LLMs), often requiring robust multi step logical consistency. While Chain of Thought (CoT) prompting elicits reasoning steps, it doesn't guarantee correctness, and improving reliability via extensive sampling is computationally costly. This paper introduces the Energy Outcome Reward Model (EORM), an effective, lightweight, post hoc verifier. EORM leverages Energy Based Models (EBMs) to simplify the training of reward models by learning to assign a scalar energy score to CoT solutions using only outcome labels, thereby avoiding detailed annotations. It achieves this by interpreting discriminator output logits as negative energies, effectively ranking candidates where lower energy is assigned to solutions leading to correct final outcomes implicitly favoring coherent reasoning. On mathematical benchmarks (GSM8k, MATH), EORM significantly improves final answer accuracy (e.g., with Llama 3 8B, achieving 90.7% on GSM8k and 63.7% on MATH). EORM effectively leverages a given pool of candidate solutions to match or exceed the performance of brute force sampling, thereby enhancing LLM reasoning outcome reliability through its streamlined post hoc verification process.
Abstract:Hand shadow art is a captivating art form, creatively using hand shadows to reproduce expressive shapes on the wall. In this work, we study an inverse problem: given a target shape, find the poses of left and right hands that together best produce a shadow resembling the input. This problem is nontrivial, since the design space of 3D hand poses is huge while being restrictive due to anatomical constraints. Also, we need to attend to the input's shape and crucial features, though the input is colorless and textureless. To meet these challenges, we design Hand-Shadow Poser, a three-stage pipeline, to decouple the anatomical constraints (by hand) and semantic constraints (by shadow shape): (i) a generative hand assignment module to explore diverse but reasonable left/right-hand shape hypotheses; (ii) a generalized hand-shadow alignment module to infer coarse hand poses with a similarity-driven strategy for selecting hypotheses; and (iii) a shadow-feature-aware refinement module to optimize the hand poses for physical plausibility and shadow feature preservation. Further, we design our pipeline to be trainable on generic public hand data, thus avoiding the need for any specialized training dataset. For method validation, we build a benchmark of 210 diverse shadow shapes of varying complexity and a comprehensive set of metrics, including a novel DINOv2-based evaluation metric. Through extensive comparisons with multiple baselines and user studies, our approach is demonstrated to effectively generate bimanual hand poses for a large variety of hand shapes for over 85% of the benchmark cases.
Abstract:Data driven discovery of partial differential equations (PDEs) is a promising approach for uncovering the underlying laws governing complex systems. However, purely data driven techniques face the dilemma of balancing search space with optimization efficiency. This study introduces a knowledge guided approach that incorporates existing PDEs documented in a mathematical handbook to facilitate the discovery process. These PDEs are encoded as sentence like structures composed of operators and basic terms, and used to train a generative model, called EqGPT, which enables the generation of free form PDEs. A loop of generation evaluation optimization is constructed to autonomously identify the most suitable PDE. Experimental results demonstrate that this framework can recover a variety of PDE forms with high accuracy and computational efficiency, particularly in cases involving complex temporal derivatives or intricate spatial terms, which are often beyond the reach of conventional methods. The approach also exhibits generalizability to irregular spatial domains and higher dimensional settings. Notably, it succeeds in discovering a previously unreported PDE governing strongly nonlinear surface gravity waves propagating toward breaking, based on real world experimental data, highlighting its applicability to practical scenarios and its potential to support scientific discovery.
Abstract:Localized image captioning has made significant progress with models like the Describe Anything Model (DAM), which can generate detailed region-specific descriptions without explicit region-text supervision. However, such capabilities have yet to be widely applied to specialized domains like medical imaging, where diagnostic interpretation relies on subtle regional findings rather than global understanding. To mitigate this gap, we propose MedDAM, the first comprehensive framework leveraging large vision-language models for region-specific captioning in medical images. MedDAM employs medical expert-designed prompts tailored to specific imaging modalities and establishes a robust evaluation benchmark comprising a customized assessment protocol, data pre-processing pipeline, and specialized QA template library. This benchmark evaluates both MedDAM and other adaptable large vision-language models, focusing on clinical factuality through attribute-level verification tasks, thereby circumventing the absence of ground-truth region-caption pairs in medical datasets. Extensive experiments on the VinDr-CXR, LIDC-IDRI, and SkinCon datasets demonstrate MedDAM's superiority over leading peers (including GPT-4o, Claude 3.7 Sonnet, LLaMA-3.2 Vision, Qwen2.5-VL, GPT-4Rol, and OMG-LLaVA) in the task, revealing the importance of region-level semantic alignment in medical image understanding and establishing MedDAM as a promising foundation for clinical vision-language integration.
Abstract:Video event detection has become an essential component of sports analytics, enabling automated identification of key moments and enhancing performance analysis, viewer engagement, and broadcast efficiency. Recent advancements in deep learning, particularly Convolutional Neural Networks (CNNs) and Transformers, have significantly improved accuracy and efficiency in Temporal Action Localization (TAL), Action Spotting (AS), and Precise Event Spotting (PES). This survey provides a comprehensive overview of these three key tasks, emphasizing their differences, applications, and the evolution of methodological approaches. We thoroughly review and categorize existing datasets and evaluation metrics specifically tailored for sports contexts, highlighting the strengths and limitations of each. Furthermore, we analyze state-of-the-art techniques, including multi-modal approaches that integrate audio and visual information, methods utilizing self-supervised learning and knowledge distillation, and approaches aimed at generalizing across multiple sports. Finally, we discuss critical open challenges and outline promising research directions toward developing more generalized, efficient, and robust event detection frameworks applicable to diverse sports. This survey serves as a foundation for future research on efficient, generalizable, and multi-modal sports event detection.
Abstract:This article investigates the application of pinching-antenna systems (PASS) in multiuser multiple-input single-output (MISO) communications. Two sum-rate maximization problems are formulated under minimum mean square error (MMSE) decoding, with and without successive interference cancellation (SIC). To address the joint optimization of pinching antenna locations and user transmit powers, a fractional programming-based approach is proposed. Numerical results validate the effectiveness of the proposed method and show that PASS can significantly enhance uplink sum-rate performance compared to conventional fixed-antenna designs.
Abstract:In this paper, we presented GraphOmni, a comprehensive benchmark framework for systematically evaluating the graph reasoning capabilities of LLMs. By analyzing critical dimensions, including graph types, serialization formats, and prompt schemes, we provided extensive insights into the strengths and limitations of current LLMs. Our empirical findings emphasize that no single serialization or prompting strategy consistently outperforms others. Motivated by these insights, we propose a reinforcement learning-based approach that dynamically selects the best serialization-prompt pairings, resulting in significant accuracy improvements. GraphOmni's modular and extensible design establishes a robust foundation for future research, facilitating advancements toward general-purpose graph reasoning models.