



Abstract:In this report, we present the third technical report on the development of slow-thinking models as part of the STILL project. As the technical pathway becomes clearer, scaling RL training has become a central technique for implementing such reasoning models. We systematically experiment with and document the effects of various factors influencing RL training, conducting experiments on both base models and fine-tuned models. Specifically, we demonstrate that our RL training approach consistently improves the Qwen2.5-32B base models, enhancing both response length and test accuracy. Furthermore, we show that even when a model like DeepSeek-R1-Distill-Qwen-1.5B has already achieved a high performance level, it can be further refined through RL training, reaching an accuracy of 39.33% on AIME 2024. Beyond RL training, we also explore the use of tool manipulation, finding that it significantly boosts the reasoning performance of large reasoning models. This approach achieves a remarkable accuracy of 86.67% with greedy search on AIME 2024, underscoring its effectiveness in enhancing model capabilities. We release our resources at the STILL project website: https://github.com/RUCAIBox/Slow_Thinking_with_LLMs.
Abstract:In recent research advancements within the community, large language models (LLMs) have sparked great interest in creating autonomous agents. However, current prompt-based agents often heavily rely on large-scale LLMs. Meanwhile, although fine-tuning methods significantly enhance the capabilities of smaller LLMs, the fine-tuned agents often lack the potential for self-reflection and self-improvement. To address these challenges, we introduce a novel agent framework named RetroAct, which is a framework that jointly optimizes both task-planning and self-reflective evolution capabilities in language agents. Specifically, we develop a two-stage joint optimization process that integrates imitation learning and reinforcement learning, and design an off-policy joint policy gradient optimization algorithm with imitation learning regularization to enhance the data efficiency and training stability in agent tasks. RetroAct significantly improves the performance of open-source models, reduces dependency on closed-source LLMs, and enables fine-tuned agents to learn and evolve continuously. We conduct extensive experiments across various testing environments, demonstrating RetroAct has substantial improvements in task performance and decision-making processes.
Abstract:Retrieval augmented generation (RAG) holds great promise in addressing challenges associated with long video understanding. These methods retrieve useful moments from long videos for their presented tasks, thereby enabling multimodal large language models (MLLMs) to generate high-quality answers in a cost-effective way. In this work, we present MomentSeeker, a comprehensive benchmark to evaluate retrieval models' performance in handling general long-video moment retrieval (LVMR) tasks. MomentSeeker offers three key advantages. First, it incorporates long videos of over 500 seconds on average, making it the first benchmark specialized for long-video moment retrieval. Second, it covers a wide range of task categories (including Moment Search, Caption Alignment, Image-conditioned Moment Search, and Video-conditioned Moment Search) and diverse application scenarios (e.g., sports, movies, cartoons, and ego), making it a comprehensive tool for assessing retrieval models' general LVMR performance. Additionally, the evaluation tasks are carefully curated through human annotation, ensuring the reliability of assessment. We further fine-tune an MLLM-based LVMR retriever on synthetic data, which demonstrates strong performance on our benchmark. We perform extensive experiments with various popular multimodal retrievers based on our benchmark, whose results highlight the challenges of LVMR and limitations for existing methods. Our created resources will be shared with community to advance future research in this field.
Abstract:Visual instruction tuning has become the predominant technology in eliciting the multimodal task-solving capabilities of large vision-language models (LVLMs). Despite the success, as visual instructions require images as the input, it would leave the gap in inheriting the task-solving capabilities from the backbone LLMs, and make it costly to collect a large-scale dataset. To address it, we propose ViFT, a visual instruction-free fine-tuning framework for LVLMs. In ViFT, we only require the text-only instructions and image caption data during training, to separately learn the task-solving and visual perception abilities. During inference, we extract and combine the representations of the text and image inputs, for fusing the two abilities to fulfill multimodal tasks. Experimental results demonstrate that ViFT can achieve state-of-the-art performance on several visual reasoning and visual instruction following benchmarks, with rather less training data. Our code and data will be publicly released.
Abstract:In modern information retrieval (IR). achieving more than just accuracy is essential to sustaining a healthy ecosystem, especially when addressing fairness and diversity considerations. To meet these needs, various datasets, algorithms, and evaluation frameworks have been introduced. However, these algorithms are often tested across diverse metrics, datasets, and experimental setups, leading to inconsistencies and difficulties in direct comparisons. This highlights the need for a comprehensive IR toolkit that enables standardized evaluation of fairness- and diversity-aware algorithms across different IR tasks. To address this challenge, we present FairDiverse, an open-source and standardized toolkit. FairDiverse offers a framework for integrating fair and diverse methods, including pre-processing, in-processing, and post-processing techniques, at different stages of the IR pipeline. The toolkit supports the evaluation of 28 fairness and diversity algorithms across 16 base models, covering two core IR tasks (search and recommendation) thereby establishing a comprehensive benchmark. Moreover, FairDiverse is highly extensible, providing multiple APIs that empower IR researchers to swiftly develop and evaluate their own fairness and diversity aware models, while ensuring fair comparisons with existing baselines. The project is open-sourced and available on https://github.com/XuChen0427/FairDiverse.




Abstract:Ensuring the long-term sustainability of recommender systems (RS) emerges as a crucial issue. Traditional offline evaluation methods for RS typically focus on immediate user feedback, such as clicks, but they often neglect the long-term impact of content creators. On real-world content platforms, creators can strategically produce and upload new items based on user feedback and preference trends. While previous studies have attempted to model creator behavior, they often overlook the role of information asymmetry. This asymmetry arises because creators primarily have access to feedback on the items they produce, while platforms possess data on the entire spectrum of user feedback. Current RS simulators, however, fail to account for this asymmetry, leading to inaccurate long-term evaluations. To address this gap, we propose CreAgent, a Large Language Model (LLM)-empowered creator simulation agent. By incorporating game theory's belief mechanism and the fast-and-slow thinking framework, CreAgent effectively simulates creator behavior under conditions of information asymmetry. Additionally, we enhance CreAgent's simulation ability by fine-tuning it using Proximal Policy Optimization (PPO). Our credibility validation experiments show that CreAgent aligns well with the behaviors between real-world platform and creator, thus improving the reliability of long-term RS evaluations. Moreover, through the simulation of RS involving CreAgents, we can explore how fairness- and diversity-aware RS algorithms contribute to better long-term performance for various stakeholders. CreAgent and the simulation platform are publicly available at https://github.com/shawnye2000/CreAgent.
Abstract:Solving partial differential equations (PDEs) by numerical methods meet computational cost challenge for getting the accurate solution since fine grids and small time steps are required. Machine learning can accelerate this process, but struggle with weak generalizability, interpretability, and data dependency, as well as suffer in long-term prediction. To this end, we propose a PDE-embedded network with multiscale time stepping (MultiPDENet), which fuses the scheme of numerical methods and machine learning, for accelerated simulation of flows. In particular, we design a convolutional filter based on the structure of finite difference stencils with a small number of parameters to optimize, which estimates the equivalent form of spatial derivative on a coarse grid to minimize the equation's residual. A Physics Block with a 4th-order Runge-Kutta integrator at the fine time scale is established that embeds the structure of PDEs to guide the prediction. To alleviate the curse of temporal error accumulation in long-term prediction, we introduce a multiscale time integration approach, where a neural network is used to correct the prediction error at a coarse time scale. Experiments across various PDE systems, including the Navier-Stokes equations, demonstrate that MultiPDENet can accurately predict long-term spatiotemporal dynamics, even given small and incomplete training data, e.g., spatiotemporally down-sampled datasets. MultiPDENet achieves the state-of-the-art performance compared with other neural baseline models, also with clear speedup compared to classical numerical methods.




Abstract:Predicting multiple functions labeled with Enzyme Commission (EC) numbers from the enzyme sequence is of great significance but remains a challenge due to its sparse multi-label classification nature, i.e., each enzyme is typically associated with only a few labels out of more than 6000 possible EC numbers. However, existing machine learning algorithms generally learn a fixed global representation for each enzyme to classify all functions, thereby they lack interpretability and the fine-grained information of some function-specific local residue fragments may be overwhelmed. Here we present an attention-based framework, namely ProtDETR (Protein Detection Transformer), by casting enzyme function prediction as a detection problem. It uses a set of learnable functional queries to adaptatively extract different local representations from the sequence of residue-level features for predicting different EC numbers. ProtDETR not only significantly outperforms existing deep learning-based enzyme function prediction methods, but also provides a new interpretable perspective on automatically detecting different local regions for identifying different functions through cross-attentions between queries and residue-level features. Code is available at https://github.com/yangzhao1230/ProtDETR.
Abstract:Recently, slow-thinking reasoning systems, built upon large language models (LLMs), have garnered widespread attention by scaling the thinking time during inference. There is also growing interest in adapting this capability to multimodal large language models (MLLMs). Given that MLLMs handle more complex data semantics across different modalities, it is intuitively more challenging to implement multimodal slow-thinking systems. To address this issue, in this paper, we explore a straightforward approach by fine-tuning a capable MLLM with a small amount of textual long-form thought data, resulting in a multimodal slow-thinking system, Virgo (Visual reasoning with long thought). We find that these long-form reasoning processes, expressed in natural language, can be effectively transferred to MLLMs. Moreover, it seems that such textual reasoning data can be even more effective than visual reasoning data in eliciting the slow-thinking capacities of MLLMs. While this work is preliminary, it demonstrates that slow-thinking capacities are fundamentally associated with the language model component, which can be transferred across modalities or domains. This finding can be leveraged to guide the development of more powerful slow-thinking reasoning systems. We release our resources at https://github.com/RUCAIBox/Virgo.
Abstract:Large language models (LLMs) demonstrate exceptional capabilities, yet still face the hallucination issue. Typical text generation approaches adopt an auto-regressive generation without deliberate reasoning, which often results in untrustworthy and factually inaccurate responses. In this paper, we propose HaluSearch, a novel framework that incorporates tree search-based algorithms (e.g. MCTS) to enable an explicit slow thinking generation process for mitigating hallucinations of LLMs during inference. Specifically, HaluSearch frames text generation as a step-by-step reasoning process, using a self-evaluation reward model to score each generation step and guide the tree search towards the most reliable generation pathway for fully exploiting the internal knowledge of LLMs. To balance efficiency and quality, we introduce a hierarchical thinking system switch mechanism inspired by the dual process theory in cognitive science, which dynamically alternates between fast and slow thinking modes at both the instance and step levels, adapting to the complexity of questions and reasoning states. We conduct extensive experiments on both English and Chinese datasets and the results show that our approach significantly outperforms baseline approaches.