Alert button
Picture for Ji-Rong Wen

Ji-Rong Wen

Alert button

Adapting Large Language Models by Integrating Collaborative Semantics for Recommendation

Nov 28, 2023
Bowen Zheng, Yupeng Hou, Hongyu Lu, Yu Chen, Wayne Xin Zhao, Ming Chen, Ji-Rong Wen

Recently, large language models (LLMs) have shown great potential in recommender systems, either improving existing recommendation models or serving as the backbone. However, there exists a large semantic gap between LLMs and recommender systems, since items to be recommended are often indexed by discrete identifiers (item ID) out of the LLM's vocabulary. In essence, LLMs capture language semantics while recommender systems imply collaborative semantics, making it difficult to sufficiently leverage the model capacity of LLMs for recommendation. To address this challenge, in this paper, we propose a new LLM-based recommendation model called LC-Rec, which can better integrate language and collaborative semantics for recommender systems. Our approach can directly generate items from the entire item set for recommendation, without relying on candidate items. Specifically, we make two major contributions in our approach. For item indexing, we design a learning-based vector quantization method with uniform semantic mapping, which can assign meaningful and non-conflicting IDs (called item indices) for items. For alignment tuning, we propose a series of specially designed tuning tasks to enhance the integration of collaborative semantics in LLMs. Our fine-tuning tasks enforce LLMs to deeply integrate language and collaborative semantics (characterized by the learned item indices), so as to achieve an effective adaptation to recommender systems. Extensive experiments demonstrate the effectiveness of our method, showing that our approach can outperform a number of competitive baselines including traditional recommenders and existing LLM-based recommenders. Our code is available at

Viaarxiv icon

UFIN: Universal Feature Interaction Network for Multi-Domain Click-Through Rate Prediction

Nov 27, 2023
Zhen Tian, Changwang Zhang, Wayne Xin Zhao, Xin Zhao, Ji-Rong Wen, Zhao Cao

Click-Through Rate (CTR) prediction, which aims to estimate the probability of a user clicking on an item, is a key task in online advertising. Numerous existing CTR models concentrate on modeling the feature interactions within a solitary domain, thereby rendering them inadequate for fulfilling the requisites of multi-domain recommendations in real industrial scenarios. Some recent approaches propose intricate architectures to enhance knowledge sharing and augment model training across multiple domains. However, these approaches encounter difficulties when being transferred to new recommendation domains, owing to their reliance on the modeling of ID features (e.g., item id). To address the above issue, we propose the Universal Feature Interaction Network (UFIN) approach for CTR prediction. UFIN exploits textual data to learn universal feature interactions that can be effectively transferred across diverse domains. For learning universal feature representations, we regard the text and feature as two different modalities and propose an encoder-decoder network founded on a Large Language Model (LLM) to enforce the transfer of data from the text modality to the feature modality. Building upon the above foundation, we further develop a mixtureof-experts (MoE) enhanced adaptive feature interaction model to learn transferable collaborative patterns across multiple domains. Furthermore, we propose a multi-domain knowledge distillation framework to enhance feature interaction learning. Based on the above methods, UFIN can effectively bridge the semantic gap to learn common knowledge across various domains, surpassing the constraints of ID-based models. Extensive experiments conducted on eight datasets show the effectiveness of UFIN, in both multidomain and cross-platform settings. Our code is available at

Viaarxiv icon

Scaling Law of Large Sequential Recommendation Models

Nov 19, 2023
Gaowei Zhang, Yupeng Hou, Hongyu Lu, Yu Chen, Wayne Xin Zhao, Ji-Rong Wen

Scaling of neural networks has recently shown great potential to improve the model capacity in various fields. Specifically, model performance has a power-law relationship with model size or data size, which provides important guidance for the development of large-scale models. However, there is still limited understanding on the scaling effect of user behavior models in recommender systems, where the unique data characteristics (e.g. data scarcity and sparsity) pose new challenges to explore the scaling effect in recommendation tasks. In this work, we focus on investigating the scaling laws in large sequential recommendation models. Specially, we consider a pure ID-based task formulation, where the interaction history of a user is formatted as a chronological sequence of item IDs. We don't incorporate any side information (e.g. item text), because we would like to explore how scaling law holds from the perspective of user behavior. With specially improved strategies, we scale up the model size to 0.8B parameters, making it feasible to explore the scaling effect in a diverse range of model sizes. As the major findings, we empirically show that scaling law still holds for these trained models, even in data-constrained scenarios. We then fit the curve for scaling law, and successfully predict the test loss of the two largest tested model scales. Furthermore, we examine the performance advantage of scaling effect on five challenging recommendation tasks, considering the unique issues (e.g. cold start, robustness, long-term preference) in recommender systems. We find that scaling up the model size can greatly boost the performance on these challenging tasks, which again verifies the benefits of large recommendation models.

Viaarxiv icon

Are We Falling in a Middle-Intelligence Trap? An Analysis and Mitigation of the Reversal Curse

Nov 16, 2023
Ang Lv, Kaiyi Zhang, Shufang Xie, Quan Tu, Yuhan Chen, Ji-Rong Wen, Rui Yan

Recent studies have highlighted a phenomenon in large language models (LLMs) known as "the reversal curse," in which the order of knowledge entities in the training data biases the models' comprehension. For example, if a model is trained on sentences where entity A consistently appears before entity B, it can respond to queries about A by providing B as the answer. However, it may encounter confusion when presented with questions concerning B. We contend that the reversal curse is partially a result of specific model training objectives, particularly evident in the prevalent use of the next-token prediction within most causal language models. For the next-token prediction, models solely focus on a token's preceding context, resulting in a restricted comprehension of the input. In contrast, we illustrate that the GLM, trained using the autoregressive blank infilling objective where tokens to be predicted have access to the entire context, exhibits better resilience against the reversal curse. We propose a novel training method, BIdirectional Casual language modeling Optimization (BICO), designed to mitigate the reversal curse when fine-tuning pretrained causal language models on new data. BICO modifies the causal attention mechanism to function bidirectionally and employs a mask denoising optimization. In the task designed to assess the reversal curse, our approach improves Llama's accuracy from the original 0% to around 70%. We hope that more attention can be focused on exploring and addressing these inherent weaknesses of the current LLMs, in order to achieve a higher level of intelligence.

Viaarxiv icon

AI-accelerated Discovery of Altermagnetic Materials

Nov 13, 2023
Ze-Feng Gao, Shuai Qu, Bocheng Zeng, Yang Liu, Ji-Rong Wen, Hao Sun, Peng-Jie Guo, Zhong-Yi Lu

Altermagnetism, a new magnetic phase, has been theoretically proposed and experimentally verified to be distinct from ferromagnetism and antiferromagnetism. Although altermagnets have been found to possess many exotic physical properties, the very limited availability of known altermagnetic materials (e.g., 14 confirmed materials) hinders the study of such properties. Hence, discovering more types of altermagnetic materials is crucial for a comprehensive understanding of altermagnetism and thus facilitating new applications in the next-generation information technologies, e.g., storage devices and high-sensitivity sensors. Here, we report 25 new altermagnetic materials that cover metals, semiconductors, and insulators, discovered by an AI search engine unifying symmetry analysis, graph neural network pre-training, optimal transport theory, and first-principles electronic structure calculation. The wide range of electronic structural characteristics reveals that various novel physical properties manifest in these newly discovered altermagnetic materials, e.g., anomalous Hall effect, anomalous Kerr effect, and topological property. Noteworthy, we discovered 8 i-wave altermagnetic materials for the first time. Overall, the AI search engine performs much better than human experts and suggests a set of new altermagnetic materials with unique properties, outlining its potential for accelerated discovery of the materials with targeting properties.

* 38 pages; 22 figures; 3 tables 
Viaarxiv icon

Beyond Imitation: Leveraging Fine-grained Quality Signals for Alignment

Nov 07, 2023
Geyang Guo, Ranchi Zhao, Tianyi Tang, Wayne Xin Zhao, Ji-Rong Wen

Alignment with human preference is a desired property of large language models (LLMs). Currently, the main alignment approach is based on reinforcement learning from human feedback (RLHF). Despite the effectiveness of RLHF, it is intricate to implement and train, thus recent studies explore how to develop alternative alignment approaches based on supervised fine-tuning (SFT). A major limitation of SFT is that it essentially does imitation learning, which cannot fully understand what are the expected behaviors. To address this issue, we propose an improved alignment approach named FIGA. Different from prior methods, we incorporate fine-grained (i.e., token or phrase level) quality signals that are derived by contrasting good and bad responses. Our approach has made two major contributions. Firstly, we curate a refined alignment dataset that pairs initial responses and the corresponding revised ones. Secondly, we devise a new loss function can leverage fine-grained quality signals to instruct the learning of LLMs for alignment. Extensive experiments have demonstrated the effectiveness of our approaches by comparing a number of competitive baselines.

Viaarxiv icon

Don't Make Your LLM an Evaluation Benchmark Cheater

Nov 03, 2023
Kun Zhou, Yutao Zhu, Zhipeng Chen, Wentong Chen, Wayne Xin Zhao, Xu Chen, Yankai Lin, Ji-Rong Wen, Jiawei Han

Figure 1 for Don't Make Your LLM an Evaluation Benchmark Cheater
Figure 2 for Don't Make Your LLM an Evaluation Benchmark Cheater
Figure 3 for Don't Make Your LLM an Evaluation Benchmark Cheater
Figure 4 for Don't Make Your LLM an Evaluation Benchmark Cheater

Large language models~(LLMs) have greatly advanced the frontiers of artificial intelligence, attaining remarkable improvement in model capacity. To assess the model performance, a typical approach is to construct evaluation benchmarks for measuring the ability level of LLMs in different aspects. Despite that a number of high-quality benchmarks have been released, the concerns about the appropriate use of these benchmarks and the fair comparison of different models are increasingly growing. Considering these concerns, in this paper, we discuss the potential risk and impact of inappropriately using evaluation benchmarks and misleadingly interpreting the evaluation results. Specially, we focus on a special issue that would lead to inappropriate evaluation, \ie \emph{benchmark leakage}, referring that the data related to evaluation sets is occasionally used for model training. This phenomenon now becomes more common since pre-training data is often prepared ahead of model test. We conduct extensive experiments to study the effect of benchmark leverage, and find that it can dramatically boost the evaluation results, which would finally lead to an unreliable assessment of model performance. To improve the use of existing evaluation benchmarks, we finally present several guidelines for both LLM developers and benchmark maintainers. We hope this work can draw attention to appropriate training and evaluation of LLMs.

* 11 pages 
Viaarxiv icon

What Makes for Good Visual Instructions? Synthesizing Complex Visual Reasoning Instructions for Visual Instruction Tuning

Nov 02, 2023
Yifan Du, Hangyu Guo, Kun Zhou, Wayne Xin Zhao, Jinpeng Wang, Chuyuan Wang, Mingchen Cai, Ruihua Song, Ji-Rong Wen

Visual instruction tuning is an essential approach to improving the zero-shot generalization capability of Multi-modal Large Language Models (MLLMs). A surge of visual instruction datasets with various focuses and characteristics have been proposed recently, enabling MLLMs to achieve surprising results on evaluation benchmarks. To develop more capable MLLMs, in this paper, we aim to investigate a more fundamental question: ``what makes for good visual instructions?''. By conducting a comprehensive empirical study, we find that instructions focused on complex visual reasoning tasks are particularly effective in improving the performance of MLLMs on evaluation benchmarks. Building upon this finding, we design a systematic approach to automatically creating high-quality complex visual reasoning instructions. Our approach employs a synthesis-complication-reformulation paradigm, leveraging multiple stages to gradually increase the complexity of the instructions while guaranteeing quality. Based on this approach, we create the synthetic visual reasoning instruction dataset consisting of 32K examples, namely ComVint, and fine-tune four MLLMs on it. Experimental results demonstrate that our dataset consistently enhances the performance of all the compared MLLMs, e.g., improving the performance of MiniGPT-4 and BLIP-2 on MME-Cognition by 32.6% and 28.8%, respectively. Our code and data are publicly available at the link:

* Work in progress 
Viaarxiv icon