Abstract:Large language models (LLMs) excel at semantic understanding, yet their ability to reconstruct internal structure from scrambled inputs remains underexplored. Sentence-level restoration is ill-posed for automated evaluation because multiple valid word orders often exist. We introduce OrderProbe, a deterministic benchmark for structural reconstruction using fixed four-character expressions in Chinese, Japanese, and Korean, which have a unique canonical order and thus support exact-match scoring. We further propose a diagnostic framework that evaluates models beyond recovery accuracy, including semantic fidelity, logical validity, consistency, robustness sensitivity, and information density. Experiments on twelve widely used LLMs show that structural reconstruction remains difficult even for frontier systems: zero-shot recovery frequently falls below 35%. We also observe a consistent dissociation between semantic recall and structural planning, suggesting that structural robustness is not an automatic byproduct of semantic competence.
Abstract:Spatial intelligence refers to the ability to perceive, reason about, and describe objects and their relationships within three-dimensional environments, forming a foundation for embodied perception and scene understanding. 3D captioning aims to describe 3D scenes in natural language; however, it remains challenging due to the sparsity and irregularity of point clouds and, more critically, the weak grounding and limited out-of-distribution (OOD) generalization of existing captioners across drastically different environments, including indoor and outdoor 3D scenes. To address this challenge, we propose 3D CoCa v2, a generalizable 3D captioning framework that unifies contrastive vision-language learning with 3D caption generation and further improves robustness via test-time search (TTS) without updating the captioner parameters. 3D CoCa v2 builds on a frozen CLIP-based semantic prior, a spatially-aware 3D scene encoder for geometry, and a multimodal decoder jointly optimized with contrastive and captioning objectives, avoiding external detectors or handcrafted proposals. At inference, TTS produces diverse caption candidates and performs reward-guided selection using a compact scene summary. Experiments show improvements over 3D CoCa of +1.50 CIDEr@0.5IoU on ScanRefer and +1.61 CIDEr@0.5IoU on Nr3D, and +3.8 CIDEr@0.25 in zero-shot OOD evaluation on TOD3Cap. Code will be released at https://github.com/AIGeeksGroup/3DCoCav2.
Abstract:Cryptocurrency trading increasingly depends on timely integration of heterogeneous web information and market microstructure signals to support short-horizon decision making under extreme volatility. However, existing trading systems struggle to jointly reason over noisy multi-source web evidence while maintaining robustness to rapid price shocks at sub-second timescales. The first challenge lies in synthesizing unstructured web content, social sentiment, and structured OHLCV signals into coherent and interpretable trading decisions without amplifying spurious correlations, while the second challenge concerns risk control, as slow deliberative reasoning pipelines are ill-suited for handling abrupt market shocks that require immediate defensive responses. To address these challenges, we propose WebCryptoAgent, an agentic trading framework that decomposes web-informed decision making into modality-specific agents and consolidates their outputs into a unified evidence document for confidence-calibrated reasoning. We further introduce a decoupled control architecture that separates strategic hourly reasoning from a real-time second-level risk model, enabling fast shock detection and protective intervention independent of the trading loop. Extensive experiments on real-world cryptocurrency markets demonstrate that WebCryptoAgent improves trading stability, reduces spurious activity, and enhances tail-risk handling compared to existing baselines. Code will be available at https://github.com/AIGeeksGroup/WebCryptoAgent.
Abstract:Embodied question answering (EQA) in 3D environments often requires collecting context that is distributed across multiple viewpoints and partially occluded. However, most recent vision--language models (VLMs) are constrained to a fixed and finite set of input views, which limits their ability to acquire question-relevant context at inference time and hinders complex spatial reasoning. We propose Chain-of-View (CoV) prompting, a training-free, test-time reasoning framework that transforms a VLM into an active viewpoint reasoner through a coarse-to-fine exploration process. CoV first employs a View Selection agent to filter redundant frames and identify question-aligned anchor views. It then performs fine-grained view adjustment by interleaving iterative reasoning with discrete camera actions, obtaining new observations from the underlying 3D scene representation until sufficient context is gathered or a step budget is reached. We evaluate CoV on OpenEQA across four mainstream VLMs and obtain an average +11.56\% improvement in LLM-Match, with a maximum gain of +13.62\% on Qwen3-VL-Flash. CoV further exhibits test-time scaling: increasing the minimum action budget yields an additional +2.51\% average improvement, peaking at +3.73\% on Gemini-2.5-Flash. On ScanQA and SQA3D, CoV delivers strong performance (e.g., 116 CIDEr / 31.9 EM@1 on ScanQA and 51.1 EM@1 on SQA3D). Overall, these results suggest that question-aligned view selection coupled with open-view search is an effective, model-agnostic strategy for improving spatial reasoning in 3D EQA without additional training.
Abstract:Monocular depth estimation aims to recover the depth information of 3D scenes from 2D images. Recent work has made significant progress, but its reliance on large-scale datasets and complex decoders has limited its efficiency and generalization ability. In this paper, we propose a lightweight and data-centric framework for zero-shot monocular depth estimation. We first adopt DINOv3 as the visual encoder to obtain high-quality dense features. Secondly, to address the inherent drawbacks of the complex structure of the DPT, we design the Simple Depth Transformer (SDT), a compact transformer-based decoder. Compared to the DPT, it uses a single-path feature fusion and upsampling process to reduce the computational overhead of cross-scale feature fusion, achieving higher accuracy while reducing the number of parameters by approximately 85%-89%. Furthermore, we propose a quality-based filtering strategy to filter out harmful samples, thereby reducing dataset size while improving overall training quality. Extensive experiments on five benchmarks demonstrate that our framework surpasses the DPT in accuracy. This work highlights the importance of balancing model design and data quality for achieving efficient and generalizable zero-shot depth estimation. Code: https://github.com/AIGeeksGroup/AnyDepth. Website: https://aigeeksgroup.github.io/AnyDepth.
Abstract:Text-to-motion (T2M) generation with diffusion backbones achieves strong realism and alignment. Safety concerns in T2M methods have been raised in recent years; existing methods replace discrete VQ-VAE codebook entries to steer the model away from unsafe behaviors. However, discrete codebook replacement-based methods have two critical flaws: firstly, replacing codebook entries which are reused by benign prompts leads to drifts on everyday tasks, degrading the model's benign performance; secondly, discrete token-based methods introduce quantization and smoothness loss, resulting in artifacts and jerky transitions. Moreover, existing text-to-motion datasets naturally contain unsafe intents and corresponding motions, making them unsuitable for safety-driven machine learning. To address these challenges, we propose SafeMo, a trustworthy motion generative framework integrating Minimal Motion Unlearning (MMU), a two-stage machine unlearning strategy, enabling safe human motion generation in continuous space, preserving continuous kinematics without codebook loss and delivering strong safety-utility trade-offs compared to current baselines. Additionally, we present the first safe text-to-motion dataset SafeMoVAE-29K integrating rewritten safe text prompts and continuous refined motion for trustworthy human motion unlearning. Built upon DiP, SafeMo efficiently generates safe human motions with natural transitions. Experiments demonstrate effective unlearning performance of SafeMo by showing strengthened forgetting on unsafe prompts, reaching 2.5x and 14.4x higher forget-set FID on HumanML3D and Motion-X respectively, compared to the previous SOTA human motion unlearning method LCR, with benign performance on safe prompts being better or comparable. Code: https://github.com/AIGeeksGroup/SafeMo. Website: https://aigeeksgroup.github.io/SafeMo.
Abstract:The creation of high-fidelity, physically-based rendering (PBR) materials remains a bottleneck in many graphics pipelines, typically requiring specialized equipment and expert-driven post-processing. To democratize this process, we present MatE, a novel method for generating tileable PBR materials from a single image taken under unconstrained, real-world conditions. Given an image and a user-provided mask, MatE first performs coarse rectification using an estimated depth map as a geometric prior, and then employs a dual-branch diffusion model. Leveraging a learned consistency from rotation-aligned and scale-aligned training data, this model further rectify residual distortions from the coarse result and translate it into a complete set of material maps, including albedo, normal, roughness and height. Our framework achieves invariance to the unknown illumination and perspective of the input image, allowing for the recovery of intrinsic material properties from casual captures. Through comprehensive experiments on both synthetic and real-world data, we demonstrate the efficacy and robustness of our approach, enabling users to create realistic materials from real-world image.
Abstract:Memory has emerged, and will continue to remain, a core capability of foundation model-based agents. As research on agent memory rapidly expands and attracts unprecedented attention, the field has also become increasingly fragmented. Existing works that fall under the umbrella of agent memory often differ substantially in their motivations, implementations, and evaluation protocols, while the proliferation of loosely defined memory terminologies has further obscured conceptual clarity. Traditional taxonomies such as long/short-term memory have proven insufficient to capture the diversity of contemporary agent memory systems. This work aims to provide an up-to-date landscape of current agent memory research. We begin by clearly delineating the scope of agent memory and distinguishing it from related concepts such as LLM memory, retrieval augmented generation (RAG), and context engineering. We then examine agent memory through the unified lenses of forms, functions, and dynamics. From the perspective of forms, we identify three dominant realizations of agent memory, namely token-level, parametric, and latent memory. From the perspective of functions, we propose a finer-grained taxonomy that distinguishes factual, experiential, and working memory. From the perspective of dynamics, we analyze how memory is formed, evolved, and retrieved over time. To support practical development, we compile a comprehensive summary of memory benchmarks and open-source frameworks. Beyond consolidation, we articulate a forward-looking perspective on emerging research frontiers, including memory automation, reinforcement learning integration, multimodal memory, multi-agent memory, and trustworthiness issues. We hope this survey serves not only as a reference for existing work, but also as a conceptual foundation for rethinking memory as a first-class primitive in the design of future agentic intelligence.
Abstract:Recent advances in multimodal large language models (MLLMs) have led to impressive progress across various benchmarks. However, their capability in understanding infrared images remains unexplored. To address this gap, we introduce IF-Bench, the first high-quality benchmark designed for evaluating multimodal understanding of infrared images. IF-Bench consists of 499 images sourced from 23 infrared datasets and 680 carefully curated visual question-answer pairs, covering 10 essential dimensions of image understanding. Based on this benchmark, we systematically evaluate over 40 open-source and closed-source MLLMs, employing cyclic evaluation, bilingual assessment, and hybrid judgment strategies to enhance the reliability of the results. Our analysis reveals how model scale, architecture, and inference paradigms affect infrared image comprehension, providing valuable insights for this area. Furthermore, we propose a training-free generative visual prompting (GenViP) method, which leverages advanced image editing models to translate infrared images into semantically and spatially aligned RGB counterparts, thereby mitigating domain distribution shifts. Extensive experiments demonstrate that our method consistently yields significant performance improvements across a wide range of MLLMs. The benchmark and code are available at https://github.com/casiatao/IF-Bench.
Abstract:Visual concept composition, which aims to integrate different elements from images and videos into a single, coherent visual output, still falls short in accurately extracting complex concepts from visual inputs and flexibly combining concepts from both images and videos. We introduce Bind & Compose, a one-shot method that enables flexible visual concept composition by binding visual concepts with corresponding prompt tokens and composing the target prompt with bound tokens from various sources. It adopts a hierarchical binder structure for cross-attention conditioning in Diffusion Transformers to encode visual concepts into corresponding prompt tokens for accurate decomposition of complex visual concepts. To improve concept-token binding accuracy, we design a Diversify-and-Absorb Mechanism that uses an extra absorbent token to eliminate the impact of concept-irrelevant details when training with diversified prompts. To enhance the compatibility between image and video concepts, we present a Temporal Disentanglement Strategy that decouples the training process of video concepts into two stages with a dual-branch binder structure for temporal modeling. Evaluations demonstrate that our method achieves superior concept consistency, prompt fidelity, and motion quality over existing approaches, opening up new possibilities for visual creativity.