Abstract:Large pretrained language models and neural reasoning systems have advanced many natural language tasks, yet they remain challenged by knowledge-intensive queries that require precise, structured multi-hop inference. Knowledge graphs provide a compact symbolic substrate for factual grounding, but integrating graph structure with neural models is nontrivial: naively embedding graph facts into prompts leads to inefficiency and fragility, while purely symbolic or search-heavy approaches can be costly in retrievals and lack gradient-based refinement. We introduce NeuroSymActive, a modular framework that combines a differentiable neural-symbolic reasoning layer with an active, value-guided exploration controller for Knowledge Graph Question Answering. The method couples soft-unification style symbolic modules with a neural path evaluator and a Monte-Carlo style exploration policy that prioritizes high-value path expansions. Empirical results on standard KGQA benchmarks show that NeuroSymActive attains strong answer accuracy while reducing the number of expensive graph lookups and model calls compared to common retrieval-augmented baselines.
Abstract:We introduce SecCodeBench-V2, a publicly released benchmark for evaluating Large Language Model (LLM) copilots' capabilities of generating secure code. SecCodeBench-V2 comprises 98 generation and fix scenarios derived from Alibaba Group's industrial productions, where the underlying security issues span 22 common CWE (Common Weakness Enumeration) categories across five programming languages: Java, C, Python, Go, and Node.js. SecCodeBench-V2 adopts a function-level task formulation: each scenario provides a complete project scaffold and requires the model to implement or patch a designated target function under fixed interfaces and dependencies. For each scenario, SecCodeBench-V2 provides executable proof-of-concept (PoC) test cases for both functional validation and security verification. All test cases are authored and double-reviewed by security experts, ensuring high fidelity, broad coverage, and reliable ground truth. Beyond the benchmark itself, we build a unified evaluation pipeline that assesses models primarily via dynamic execution. For most scenarios, we compile and run model-generated artifacts in isolated environments and execute PoC test cases to validate both functional correctness and security properties. For scenarios where security issues cannot be adjudicated with deterministic test cases, we additionally employ an LLM-as-a-judge oracle. To summarize performance across heterogeneous scenarios and difficulty levels, we design a Pass@K-based scoring protocol with principled aggregation over scenarios and severity, enabling holistic and comparable evaluation across models. Overall, SecCodeBench-V2 provides a rigorous and reproducible foundation for assessing the security posture of AI coding assistants, with results and artifacts released at https://alibaba.github.io/sec-code-bench. The benchmark is publicly available at https://github.com/alibaba/sec-code-bench.
Abstract:Human motion understanding and generation are crucial for vision and robotics but remain limited in reasoning capability and test-time planning. We propose MoRL, a unified multimodal motion model trained with supervised fine-tuning and reinforcement learning with verifiable rewards. Our task-specific reward design combines semantic alignment and reasoning coherence for understanding with physical plausibility and text-motion consistency for generation, improving both logical reasoning and perceptual realism. To further enhance inference, we introduce Chain-of-Motion (CoM), a test-time reasoning method that enables step-by-step planning and reflection. We also construct two large-scale CoT datasets, MoUnd-CoT-140K and MoGen-CoT-140K, to align motion sequences with reasoning traces and action descriptions. Experiments on HumanML3D and KIT-ML show that MoRL achieves significant gains over state-of-the-art baselines. Code: https://github.com/AIGeeksGroup/MoRL. Website: https://aigeeksgroup.github.io/MoRL.
Abstract:Content-aware streaming requires dynamic, chunk-level importance weights to optimize subjective quality of experience (QoE). However, direct human annotation is prohibitively expensive while vision-saliency models generalize poorly. We introduce HiVid, the first framework to leverage Large Language Models (LLMs) as a scalable human proxy to generate high-fidelity weights for both Video-on-Demand (VOD) and live streaming. We address 3 non-trivial challenges: (1) To extend LLMs' limited modality and circumvent token limits, we propose a perception module to assess frames in a local context window, autoregressively building a coherent understanding of the video. (2) For VOD with rating inconsistency across local windows, we propose a ranking module to perform global re-ranking with a novel LLM-guided merge-sort algorithm. (3) For live streaming which requires low-latency, online inference without future knowledge, we propose a prediction module to predict future weights with a multi-modal time series model, which comprises a content-aware attention and adaptive horizon to accommodate asynchronous LLM inference. Extensive experiments show HiVid improves weight prediction accuracy by up to 11.5\% for VOD and 26\% for live streaming over SOTA baselines. Real-world user study validates HiVid boosts streaming QoE correlation by 14.7\%.
Abstract:Recent advances in diffusion-based generative models have established a new paradigm for image and video relighting. However, extending these capabilities to 4D relighting remains challenging, due primarily to the scarcity of paired 4D relighting training data and the difficulty of maintaining temporal consistency across extreme viewpoints. In this work, we propose Light4D, a novel training-free framework designed to synthesize consistent 4D videos under target illumination, even under extreme viewpoint changes. First, we introduce Disentangled Flow Guidance, a time-aware strategy that effectively injects lighting control into the latent space while preserving geometric integrity. Second, to reinforce temporal consistency, we develop Temporal Consistent Attention within the IC-Light architecture and further incorporate deterministic regularization to eliminate appearance flickering. Extensive experiments demonstrate that our method achieves competitive performance in temporal consistency and lighting fidelity, robustly handling camera rotations from -90 to 90. Code: https://github.com/AIGeeksGroup/Light4D. Website: https://aigeeksgroup.github.io/Light4D.
Abstract:Achieving spatial intelligence requires moving beyond visual plausibility to build world simulators grounded in physical laws. While coding LLMs have advanced static 3D scene generation, extending this paradigm to 4D dynamics remains a critical frontier. This task presents two fundamental challenges: multi-scale context entanglement, where monolithic generation fails to balance local object structures with global environmental layouts; and a semantic-physical execution gap, where open-loop code generation leads to physical hallucinations lacking dynamic fidelity. We introduce Code2Worlds, a framework that formulates 4D generation as language-to-simulation code generation. First, we propose a dual-stream architecture that disentangles retrieval-augmented object generation from hierarchical environmental orchestration. Second, to ensure dynamic fidelity, we establish a physics-aware closed-loop mechanism in which a PostProcess Agent scripts dynamics, coupled with a VLM-Motion Critic that performs self-reflection to iteratively refine simulation code. Evaluations on the Code4D benchmark show Code2Worlds outperforms baselines with a 41% SGS gain and 49% higher Richness, while uniquely generating physics-aware dynamics absent in prior static methods. Code: https://github.com/AIGeeksGroup/Code2Worlds. Website: https://aigeeksgroup.github.io/Code2Worlds.
Abstract:Multi-agent architectures built on large language models (LLMs) have demonstrated the potential to realize swarm intelligence through well-crafted collaboration. However, the substantial burden of manual orchestration inherently raises an imperative to automate the design of agentic workflows. We frame such an agent coordination challenge as a classic problem in dynamic ad-hoc networking: How to establish adaptive and reliable communication among a scalable number of agentic hosts? In response to this unresolved dilemma, we introduce RAPS, a reputation-aware publish-subscribe paradigm for adaptive, scalable, and robust coordination of LLM agents. RAPS is grounded in the Distributed Publish-Subscribe Protocol, allowing LLM agents to exchange messages based on their declared intents rather than predefined topologies. Beyond this substrate, RAPS further incorporates two coherent overlays: (i) Reactive Subscription, enabling agents to dynamically refine their intents; and (ii) Bayesian Reputation, empowering each agent with a local watchdog to detect and isolate malicious peers. Extensive experiments over five benchmarks showcase that our design effectively reconciles adaptivity, scalability, and robustness in a unified multi-agent coordination framework.
Abstract:Retrieval-augmented generation (RAG) enhances LLM reasoning in knowledge-intensive tasks, but existing RAG pipelines incur substantial retrieval and generation overhead when applied to large-scale entity matching. To address this limitation, we introduce CE-RAG4EM, a cost-efficient RAG architecture that reduces computation through blocking-based batch retrieval and generation. We also present a unified framework for analyzing and evaluating RAG systems for entity matching, focusing on blocking-aware optimizations and retrieval granularity. Extensive experiments suggest that CE-RAG4EM can achieve comparable or improved matching quality while substantially reducing end-to-end runtime relative to strong baselines. Our analysis further reveals that key configuration parameters introduce an inherent trade-off between performance and overhead, offering practical guidance for designing efficient and scalable RAG systems for entity matching and data integration.
Abstract:Multimodal Large Language Models (MLLMs) have recently been applied to universal multimodal retrieval, where Chain-of-Thought (CoT) reasoning improves candidate reranking. However, existing approaches remain largely language-driven, relying on static visual encodings and lacking the ability to actively verify fine-grained visual evidence, which often leads to speculative reasoning in visually ambiguous cases. We propose V-Retrver, an evidence-driven retrieval framework that reformulates multimodal retrieval as an agentic reasoning process grounded in visual inspection. V-Retrver enables an MLLM to selectively acquire visual evidence during reasoning via external visual tools, performing a multimodal interleaved reasoning process that alternates between hypothesis generation and targeted visual verification.To train such an evidence-gathering retrieval agent, we adopt a curriculum-based learning strategy combining supervised reasoning activation, rejection-based refinement, and reinforcement learning with an evidence-aligned objective. Experiments across multiple multimodal retrieval benchmarks demonstrate consistent improvements in retrieval accuracy (with 23.0% improvements on average), perception-driven reasoning reliability, and generalization.
Abstract:Large foundation models have shown strong open-world generalization to complex problems in vision and language, but similar levels of generalization have yet to be achieved in robotics. One fundamental challenge is that the models exhibit limited zero-shot capability, which hampers their ability to generalize effectively to unseen scenarios. In this work, we propose GeneralVLA (Generalizable Vision-Language-Action Models with Knowledge-Guided Trajectory Planning), a hierarchical vision-language-action (VLA) model that can be more effective in utilizing the generalization of foundation models, enabling zero-shot manipulation and automatically generating data for robotics. In particular, we study a class of hierarchical VLA model where the high-level ASM (Affordance Segmentation Module) is finetuned to perceive image keypoint affordances of the scene; the mid-level 3DAgent carries out task understanding, skill knowledge, and trajectory planning to produce a 3D path indicating the desired robot end-effector trajectory. The intermediate 3D path prediction is then served as guidance to the low-level, 3D-aware control policy capable of precise manipulation. Compared to alternative approaches, our method requires no real-world robotic data collection or human demonstration, making it much more scalable to diverse tasks and viewpoints. Empirically, GeneralVLA successfully generates trajectories for 14 tasks, significantly outperforming state-of-the-art methods such as VoxPoser. The generated demonstrations can train more robust behavior cloning policies than training with human demonstrations or from data generated by VoxPoser, Scaling-up, and Code-As-Policies. We believe GeneralVLA can be the scalable method for both generating data for robotics and solving novel tasks in a zero-shot setting. Code: https://github.com/AIGeeksGroup/GeneralVLA. Website: https://aigeeksgroup.github.io/GeneralVLA.