Abstract:Machine unlearning techniques aim to mitigate unintended memorization in large language models (LLMs). However, existing approaches predominantly focus on the explicit removal of isolated facts, often overlooking latent inferential dependencies and the non-deterministic nature of knowledge within LLMs. Consequently, facts presumed forgotten may persist implicitly through correlated information. To address these challenges, we propose a knowledge unlearning evaluation framework that more accurately captures the implicit structure of real-world knowledge by representing relevant factual contexts as knowledge graphs with associated confidence scores. We further develop an inference-based evaluation protocol leveraging powerful LLMs as judges; these judges reason over the extracted knowledge subgraph to determine unlearning success. Our LLM judges utilize carefully designed prompts and are calibrated against human evaluations to ensure their trustworthiness and stability. Extensive experiments on our newly constructed benchmark demonstrate that our framework provides a more realistic and rigorous assessment of unlearning performance. Moreover, our findings reveal that current evaluation strategies tend to overestimate unlearning effectiveness. Our code is publicly available at https://github.com/Graph-COM/Knowledge_Unlearning.git.
Abstract:Existing Embodied Question Answering (EQA) benchmarks primarily focus on household environments, often overlooking safety-critical aspects and reasoning processes pertinent to industrial settings. This drawback limits the evaluation of agent readiness for real-world industrial applications. To bridge this, we introduce IndustryEQA, the first benchmark dedicated to evaluating embodied agent capabilities within safety-critical warehouse scenarios. Built upon the NVIDIA Isaac Sim platform, IndustryEQA provides high-fidelity episodic memory videos featuring diverse industrial assets, dynamic human agents, and carefully designed hazardous situations inspired by real-world safety guidelines. The benchmark includes rich annotations covering six categories: equipment safety, human safety, object recognition, attribute recognition, temporal understanding, and spatial understanding. Besides, it also provides extra reasoning evaluation based on these categories. Specifically, it comprises 971 question-answer pairs generated from small warehouse and 373 pairs from large ones, incorporating scenarios with and without human. We further propose a comprehensive evaluation framework, including various baseline models, to assess their general perception and reasoning abilities in industrial environments. IndustryEQA aims to steer EQA research towards developing more robust, safety-aware, and practically applicable embodied agents for complex industrial environments. Benchmark and codes are available.
Abstract:Diffusion Transformers (DiT) are powerful generative models but remain computationally intensive due to their iterative structure and deep transformer stacks. To alleviate this inefficiency, we propose FastCache, a hidden-state-level caching and compression framework that accelerates DiT inference by exploiting redundancy within the model's internal representations. FastCache introduces a dual strategy: (1) a spatial-aware token selection mechanism that adaptively filters redundant tokens based on hidden state saliency, and (2) a transformer-level cache that reuses latent activations across timesteps when changes are statistically insignificant. These modules work jointly to reduce unnecessary computation while preserving generation fidelity through learnable linear approximation. Theoretical analysis shows that FastCache maintains bounded approximation error under a hypothesis-testing-based decision rule. Empirical evaluations across multiple DiT variants demonstrate substantial reductions in latency and memory usage, with best generation output quality compared to other cache methods, as measured by FID and t-FID. Code implementation of FastCache is available on GitHub at https://github.com/NoakLiu/FastCache-xDiT.
Abstract:Text-to-SQL is a fundamental task in natural language processing that seeks to translate natural language questions into meaningful and executable SQL queries. While existing datasets are extensive and primarily focus on business scenarios and operational logic, they frequently lack coverage of domain-specific knowledge and complex mathematical reasoning. To address this gap, we present a novel dataset tailored for complex reasoning and chain-of-thought analysis in SQL inference, encompassing physical, arithmetic, commonsense, and hypothetical reasoning. The dataset consists of 4,038 English questions, each paired with a unique SQL query and accompanied by 12,114 step-by-step reasoning annotations, spanning 45 databases across diverse domains. Experimental results demonstrate that LogicCat substantially increases the difficulty for state-of-the-art models, with the highest execution accuracy reaching only 14.96%. Incorporating our chain-of-thought annotations boosts performance to 33.96%. Benchmarking leading public methods on Spider and BIRD further underscores the unique challenges presented by LogicCat, highlighting the significant opportunities for advancing research in robust, reasoning-driven text-to-SQL systems. We have released our dataset code at https://github.com/Ffunkytao/LogicCat.
Abstract:Inhalation injuries present a challenge in clinical diagnosis and grading due to Conventional grading methods such as the Abbreviated Injury Score (AIS) being subjective and lacking robust correlation with clinical parameters like mechanical ventilation duration and patient mortality. This study introduces a novel deep learning-based diagnosis assistant tool for grading inhalation injuries using bronchoscopy images to overcome subjective variability and enhance consistency in severity assessment. Our approach leverages data augmentation techniques, including graphic transformations, Contrastive Unpaired Translation (CUT), and CycleGAN, to address the scarcity of medical imaging data. We evaluate the classification performance of two deep learning models, GoogLeNet and Vision Transformer (ViT), across a dataset significantly expanded through these augmentation methods. The results demonstrate GoogLeNet combined with CUT as the most effective configuration for grading inhalation injuries through bronchoscopy images and achieves a classification accuracy of 97.8%. The histograms and frequency analysis evaluations reveal variations caused by the augmentation CUT with distribution changes in the histogram and texture details of the frequency spectrum. PCA visualizations underscore the CUT substantially enhances class separability in the feature space. Moreover, Grad-CAM analyses provide insight into the decision-making process; mean intensity for CUT heatmaps is 119.6, which significantly exceeds 98.8 of the original datasets. Our proposed tool leverages mechanical ventilation periods as a novel grading standard, providing comprehensive diagnostic support.
Abstract:Keratoconus (KC) is a corneal disorder that results in blurry and distorted vision. Traditional diagnostic tools, while effective, are often bulky, costly, and require professional operation. In this paper, we present a portable and innovative methodology for diagnosing. Our proposed approach first captures the image reflected on the eye's cornea when a smartphone screen-generated Placido disc sheds its light on an eye, then utilizes a two-stage diagnosis for identifying the KC cornea and pinpointing the location of the KC on the cornea. The first stage estimates the height and width of the Placido disc extracted from the captured image to identify whether it has KC. In this KC identification, k-means clustering is implemented to discern statistical characteristics, such as height and width values of extracted Placido discs, from non-KC (control) and KC-affected groups. The second stage involves the creation of a distance matrix, providing a precise localization of KC on the cornea, which is critical for efficient treatment planning. The analysis of these distance matrices, paired with a logistic regression model and robust statistical analysis, reveals a clear distinction between control and KC groups. The logistic regression model, which classifies small areas on the cornea as either control or KC-affected based on the corresponding inter-disc distances in the distance matrix, reported a classification accuracy of 96.94%, which indicates that we can effectively pinpoint the protrusion caused by KC. This comprehensive, smartphone-based method is expected to detect KC and streamline timely treatment.
Abstract:Post-hoc explanation methods provide interpretation by attributing predictions to input features. Natural explanations are expected to interpret how the inputs lead to the predictions. Thus, a fundamental question arises: Do these explanations unintentionally reverse the natural relationship between inputs and outputs? Specifically, are the explanations rationalizing predictions from the output rather than reflecting the true decision process? To investigate such explanatory inversion, we propose Inversion Quantification (IQ), a framework that quantifies the degree to which explanations rely on outputs and deviate from faithful input-output relationships. Using the framework, we demonstrate on synthetic datasets that widely used methods such as LIME and SHAP are prone to such inversion, particularly in the presence of spurious correlations, across tabular, image, and text domains. Finally, we propose Reproduce-by-Poking (RBP), a simple and model-agnostic enhancement to post-hoc explanation methods that integrates forward perturbation checks. We further show that under the IQ framework, RBP theoretically guarantees the mitigation of explanatory inversion. Empirically, for example, on the synthesized data, RBP can reduce the inversion by 1.8% on average across iconic post-hoc explanation approaches and domains.
Abstract:To effectively reduce the visual tokens in Visual Large Language Models (VLLMs), we propose a novel approach called Window Token Concatenation (WiCo). Specifically, we employ a sliding window to concatenate spatially adjacent visual tokens. However, directly concatenating these tokens may group diverse tokens into one, and thus obscure some fine details. To address this challenge, we propose fine-tuning the last few layers of the vision encoder to adaptively adjust the visual tokens, encouraging that those within the same window exhibit similar features. To further enhance the performance on fine-grained visual understanding tasks, we introduce WiCo+, which decomposes the visual tokens in later layers of the LLM. Such a design enjoys the merits of the large perception field of the LLM for fine-grained visual understanding while keeping a small number of visual tokens for efficient inference. We perform extensive experiments on both coarse- and fine-grained visual understanding tasks based on LLaVA-1.5 and Shikra, showing better performance compared with existing token reduction projectors. The code is available: https://github.com/JackYFL/WiCo.
Abstract:Image colorization aims to bring colors back to grayscale images. Automatic image colorization methods, which requires no additional guidance, struggle to generate high-quality images due to color ambiguity, and provides limited user controllability. Thanks to the emergency of cross-modality datasets and models, language-based colorization methods are proposed to fully utilize the efficiency and flexibly of text descriptions to guide colorization. In view of the lack of a comprehensive review of language-based colorization literature, we conduct a thorough analysis and benchmarking. We first briefly summarize existing automatic colorization methods. Then, we focus on language-based methods and point out their core challenge on cross-modal alignment. We further divide these methods into two categories: one attempts to train a cross-modality network from scratch, while the other utilizes the pre-trained cross-modality model to establish the textual-visual correspondence. Based on the analyzed limitations of existing language-based methods, we propose a simple yet effective method based on distilled diffusion model. Extensive experiments demonstrate that our simple baseline can produces better results than previous complex methods with 14 times speed up. To the best of our knowledge, this is the first comprehensive review and benchmark on language-based image colorization field, providing meaningful insights for the community. The code is available at https://github.com/lyf1212/Color-Turbo.
Abstract:Visual-language models (VLM) have emerged as a powerful tool for learning a unified embedding space for vision and language. Inspired by large language models, which have demonstrated strong reasoning and multi-task capabilities, visual large language models (VLLMs) are gaining increasing attention for building general-purpose VLMs. Despite the significant progress made in VLLMs, the related literature remains limited, particularly from a comprehensive application perspective, encompassing generalized and specialized applications across vision (image, video, depth), action, and language modalities. In this survey, we focus on the diverse applications of VLLMs, examining their using scenarios, identifying ethics consideration and challenges, and discussing future directions for their development. By synthesizing these contents, we aim to provide a comprehensive guide that will pave the way for future innovations and broader applications of VLLMs. The paper list repository is available: https://github.com/JackYFL/awesome-VLLMs.