Abstract:Although video multimodal large language models (video MLLMs) have achieved substantial progress in video captioning tasks, it remains challenging to adjust the focal emphasis of video captions according to human preferences. To address this limitation, we propose Aligned Video Captioning via Direct Preference Optimization (AVC-DPO), a post-training framework designed to enhance captioning capabilities in video MLLMs through preference alignment. Our approach designs enhanced prompts that specifically target temporal dynamics and spatial information-two key factors that humans care about when watching a video-thereby incorporating human-centric preferences. AVC-DPO leverages the same foundation model's caption generation responses under varied prompt conditions to conduct preference-aware training and caption alignment. Using this framework, we have achieved exceptional performance in the LOVE@CVPR'25 Workshop Track 1A: Video Detailed Captioning Challenge, achieving first place on the Video Detailed Captioning (VDC) benchmark according to the VDCSCORE evaluation metric.
Abstract:Balancing exploration and exploitation is a central goal in reinforcement learning (RL). Despite recent advances in enhancing language model (LM) reasoning, most methods lean toward exploitation, and increasingly encounter performance plateaus. In this work, we revisit entropy -- a signal of exploration in RL -- and examine its relationship to exploratory reasoning in LMs. Through empirical analysis, we uncover strong positive correlations between high-entropy regions and three types of exploratory reasoning actions: (1) pivotal tokens that determine or connect logical steps, (2) reflective actions such as self-verification and correction, and (3) rare behaviors under-explored by the base LMs. Motivated by this, we introduce a minimal modification to standard RL with only one line of code: augmenting the advantage function with an entropy-based term. Unlike traditional maximum-entropy methods which encourage exploration by promoting uncertainty, we encourage exploration by promoting longer and deeper reasoning chains. Notably, our method achieves significant gains on the Pass@K metric -- an upper-bound estimator of LM reasoning capabilities -- even when evaluated with extremely large K values, pushing the boundaries of LM reasoning.
Abstract:With the significant progress of large reasoning models in complex coding and reasoning tasks, existing benchmarks, like LiveCodeBench and CodeElo, are insufficient to evaluate the coding capabilities of large language models (LLMs) in real competition environments. Moreover, current evaluation metrics such as Pass@K fail to capture the reflective abilities of reasoning models. To address these challenges, we propose \textbf{ICPC-Eval}, a top-level competitive coding benchmark designed to probing the frontiers of LLM reasoning. ICPC-Eval includes 118 carefully curated problems from 11 recent ICPC contests held in various regions of the world, offering three key contributions: 1) A challenging realistic ICPC competition scenario, featuring a problem type and difficulty distribution consistent with actual contests. 2) A robust test case generation method and a corresponding local evaluation toolkit, enabling efficient and accurate local evaluation. 3) An effective test-time scaling evaluation metric, Refine@K, which allows iterative repair of solutions based on execution feedback. The results underscore the significant challenge in evaluating complex reasoning abilities: top-tier reasoning models like DeepSeek-R1 often rely on multi-turn code feedback to fully unlock their in-context reasoning potential when compared to non-reasoning counterparts. Furthermore, despite recent advancements in code generation, these models still lag behind top-performing human teams. We release the benchmark at: https://github.com/RUCAIBox/Slow_Thinking_with_LLMs
Abstract:In this paper, we investigate code-integrated reasoning, where models generate code when necessary and integrate feedback by executing it through a code interpreter. To acquire this capability, models must learn when and how to use external code tools effectively, which is supported by tool-augmented reinforcement learning (RL) through interactive learning. Despite its benefits, tool-augmented RL can still suffer from potential instability in the learning dynamics. In light of this challenge, we present a systematic approach to improving the training effectiveness and stability of tool-augmented RL for code-integrated reasoning. Specifically, we develop enhanced training strategies that balance exploration and stability, progressively building tool-use capabilities while improving reasoning performance. Through extensive experiments on five mainstream mathematical reasoning benchmarks, our model demonstrates significant performance improvements over multiple competitive baselines. Furthermore, we conduct an in-depth analysis of the mechanism and effect of code-integrated reasoning, revealing several key insights, such as the extension of model's capability boundaries and the simultaneous improvement of reasoning efficiency through code integration. All data and code for reproducing this work are available at: https://github.com/RUCAIBox/CIR.
Abstract:Long-form question answering (LFQA) presents unique challenges for large language models, requiring the synthesis of coherent, paragraph-length answers. While retrieval-augmented generation (RAG) systems have emerged as a promising solution, existing research struggles with key limitations: the scarcity of high-quality training data for long-form generation, the compounding risk of hallucination in extended outputs, and the absence of reliable evaluation metrics for factual completeness. In this paper, we propose RioRAG, a novel reinforcement learning (RL) framework that advances long-form RAG through reinforced informativeness optimization. Our approach introduces two fundamental innovations to address the core challenges. First, we develop an RL training paradigm of reinforced informativeness optimization that directly optimizes informativeness and effectively addresses the slow-thinking deficit in conventional RAG systems, bypassing the need for expensive supervised data. Second, we propose a nugget-centric hierarchical reward modeling approach that enables precise assessment of long-form answers through a three-stage process: extracting the nugget from every source webpage, constructing a nugget claim checklist, and computing rewards based on factual alignment. Extensive experiments on two LFQA benchmarks LongFact and RAGChecker demonstrate the effectiveness of the proposed method. Our codes are available at https://github.com/RUCAIBox/RioRAG.
Abstract:The advent of large reasoning models, such as OpenAI o1 and DeepSeek R1, has significantly advanced complex reasoning tasks. However, their capabilities in multilingual complex reasoning remain underexplored, with existing efforts largely focused on simpler tasks like MGSM. To address this gap, we introduce MMATH, a benchmark for multilingual complex reasoning spanning 374 high-quality math problems across 10 typologically diverse languages. Using MMATH, we observe that even advanced models like DeepSeek R1 exhibit substantial performance disparities across languages and suffer from a critical off-target issue-generating responses in unintended languages. To address this, we explore strategies including prompting and training, demonstrating that reasoning in English and answering in target languages can simultaneously enhance performance and preserve target-language consistency. Our findings offer new insights and practical strategies for advancing the multilingual reasoning capabilities of large language models. Our code and data could be found at https://github.com/RUCAIBox/MMATH.
Abstract:Recent advances in web-augmented large language models (LLMs) have exhibited strong performance in complex reasoning tasks, yet these capabilities are mostly locked in proprietary systems with opaque architectures. In this work, we propose \textbf{ManuSearch}, a transparent and modular multi-agent framework designed to democratize deep search for LLMs. ManuSearch decomposes the search and reasoning process into three collaborative agents: (1) a solution planning agent that iteratively formulates sub-queries, (2) an Internet search agent that retrieves relevant documents via real-time web search, and (3) a structured webpage reading agent that extracts key evidence from raw web content. To rigorously evaluate deep reasoning abilities, we introduce \textbf{ORION}, a challenging benchmark focused on open-web reasoning over long-tail entities, covering both English and Chinese. Experimental results show that ManuSearch substantially outperforms prior open-source baselines and even surpasses leading closed-source systems. Our work paves the way for reproducible, extensible research in open deep search systems. We release the data and code in https://github.com/RUCAIBox/ManuSearch
Abstract:Large Language Models (LLMs) are powerful but prone to hallucinations due to static knowledge. Retrieval-Augmented Generation (RAG) helps by injecting external information, but current methods often are costly, generalize poorly, or ignore the internal knowledge of the model. In this paper, we introduce R1-Searcher++, a novel framework designed to train LLMs to adaptively leverage both internal and external knowledge sources. R1-Searcher++ employs a two-stage training strategy: an initial SFT Cold-start phase for preliminary format learning, followed by RL for Dynamic Knowledge Acquisition. The RL stage uses outcome-supervision to encourage exploration, incorporates a reward mechanism for internal knowledge utilization, and integrates a memorization mechanism to continuously assimilate retrieved information, thereby enriching the model's internal knowledge. By leveraging internal knowledge and external search engine, the model continuously improves its capabilities, enabling efficient retrieval-augmented reasoning. Our experiments demonstrate that R1-Searcher++ outperforms previous RAG and reasoning methods and achieves efficient retrieval. The code is available at https://github.com/RUCAIBox/R1-Searcher-plus.
Abstract:Recently, large language models (LLMs) have been introduced into recommender systems (RSs), either to enhance traditional recommendation models (TRMs) or serve as recommendation backbones. However, existing LLM-based RSs often do not fully exploit the complementary advantages of LLMs (e.g., world knowledge and reasoning) and TRMs (e.g., recommendation-specific knowledge and efficiency) to fully explore the item space. To address this, we propose DeepRec, a novel LLM-based RS that enables autonomous multi-turn interactions between LLMs and TRMs for deep exploration of the item space. In each interaction turn, LLMs reason over user preferences and interact with TRMs to retrieve candidate items. After multi-turn interactions, LLMs rank the retrieved items to generate the final recommendations. We adopt reinforcement learning(RL) based optimization and propose novel designs from three aspects: recommendation model based data rollout, recommendation-oriented hierarchical rewards, and a two-stage RL training strategy. For data rollout, we introduce a preference-aware TRM, with which LLMs interact to construct trajectory data. For rewards, we design a hierarchical reward function that involves both process-level and outcome-level rewards to optimize the interaction process and recommendation performance, respectively. For RL training, we develop a two-stage training strategy, where the first stage aims to guide LLMs to interact with TRMs and the second stage focuses on performance improvement. Experiments on public datasets demonstrate that DeepRec significantly outperforms both traditional and LLM-based baselines, offering a new paradigm for deep exploration in recommendation systems.
Abstract:Large reasoning models (LRMs) have demonstrated strong performance on complex reasoning tasks, but often suffer from overthinking, generating redundant content regardless of task difficulty. Inspired by the dual process theory in cognitive science, we propose Adaptive Cognition Policy Optimization (ACPO), a reinforcement learning framework that enables LRMs to achieve efficient reasoning through adaptive cognitive allocation and dynamic system switch. ACPO incorporates two key components: (1) introducing system-aware reasoning tokens to explicitly represent the thinking modes thereby making the model's cognitive process transparent, and (2) integrating online difficulty estimation and token length budget to guide adaptive system switch and reasoning during reinforcement learning. To this end, we propose a two-stage training strategy. The first stage begins with supervised fine-tuning to cold start the model, enabling it to generate reasoning paths with explicit thinking modes. In the second stage, we apply ACPO to further enhance adaptive system switch for difficulty-aware reasoning. Experimental results demonstrate that ACPO effectively reduces redundant reasoning while adaptively adjusting cognitive allocation based on task complexity, achieving efficient hybrid reasoning.