Abstract:In-context learning (ICL) is a crucial capability of current large language models (LLMs), where the selection of examples plays a key role in performance. While most existing approaches focus on selecting the most similar examples to the query, the impact of diversity in example selection remains underexplored. We systematically investigate the role of diversity in in-context example selection through experiments across a range of tasks, from sentiment classification to more challenging math and code problems. Experiments on Llama-3.1, Gemma-2, and Mistral-v0.3 families of models show that diversity-aware selection methods improve performance, particularly on complex tasks like math and code, and enhance robustness to out-of-distribution queries. To support these findings, we introduce a theoretical framework that explains the benefits of incorporating diversity in in-context example selection.
Abstract:This paper presents a novel framework that enables real-world humanoid robots to maintain stability while performing human-like motion. Current methods train a policy which allows humanoid robots to follow human body using the massive retargeted human data via reinforcement learning. However, due to the heterogeneity between human and humanoid robot motion, directly using retargeted human motion reduces training efficiency and stability. To this end, we introduce SMAP, a novel whole-body tracking framework that bridges the gap between human and humanoid action spaces, enabling accurate motion mimicry by humanoid robots. The core idea is to use a vector-quantized periodic autoencoder to capture generic atomic behaviors and adapt human motion into physically plausible humanoid motion. This adaptation accelerates training convergence and improves stability when handling novel or challenging motions. We then employ a privileged teacher to distill precise mimicry skills into the student policy with a proposed decoupled reward. We conduct experiments in simulation and real world to demonstrate the superiority stability and performance of SMAP over SOTA methods, offering practical guidelines for advancing whole-body control in humanoid robots.
Abstract:The integration of large language model (LLM) and data management (DATA) is rapidly redefining both domains. In this survey, we comprehensively review the bidirectional relationships. On the one hand, DATA4LLM, spanning large-scale data processing, storage, and serving, feeds LLMs with high quality, diversity, and timeliness of data required for stages like pre-training, post-training, retrieval-augmented generation, and agentic workflows: (i) Data processing for LLMs includes scalable acquisition, deduplication, filtering, selection, domain mixing, and synthetic augmentation; (ii) Data Storage for LLMs focuses on efficient data and model formats, distributed and heterogeneous storage hierarchies, KV-cache management, and fault-tolerant checkpointing; (iii) Data serving for LLMs tackles challenges in RAG (e.g., knowledge post-processing), LLM inference (e.g., prompt compression, data provenance), and training strategies (e.g., data packing and shuffling). On the other hand, in LLM4DATA, LLMs are emerging as general-purpose engines for data management. We review recent advances in (i) data manipulation, including automatic data cleaning, integration, discovery; (ii) data analysis, covering reasoning over structured, semi-structured, and unstructured data, and (iii) system optimization (e.g., configuration tuning, query rewriting, anomaly diagnosis), powered by LLM techniques like retrieval-augmented prompting, task-specialized fine-tuning, and multi-agent collaboration.
Abstract:LLM-based formal proof assistants (e.g., in Lean) hold great promise for automating mathematical discovery. But beyond syntactic correctness, do these systems truly understand mathematical structure as humans do? We investigate this question through the lens of mathematical inequalities -- a fundamental tool across many domains. While modern provers can solve basic inequalities, we probe their ability to handle human-intuitive compositionality. We introduce Ineq-Comp, a benchmark built from elementary inequalities through systematic transformations, including variable duplication, algebraic rewriting, and multi-step composition. Although these problems remain easy for humans, we find that most provers -- including Goedel, STP, and Kimina-7B -- struggle significantly. DeepSeek-Prover-V2-7B shows relative robustness -- possibly because it is trained to decompose the problems into sub-problems -- but still suffers a 20\% performance drop (pass@32). Strikingly, performance remains poor for all models even when formal proofs of the constituent parts are provided in context, revealing that the source of weakness is indeed in compositional reasoning. Our results expose a persisting gap between the generalization behavior of current AI provers and human mathematical intuition.
Abstract:Teleoperation is a cornerstone of embodied-robot learning, and bimanual dexterous teleoperation in particular provides rich demonstrations that are difficult to obtain with fully autonomous systems. While recent studies have proposed diverse hardware pipelines-ranging from inertial motion-capture gloves to exoskeletons and vision-based interfaces-there is still no unified benchmark that enables fair, reproducible comparison of these systems. In this paper, we introduce TeleOpBench, a simulator-centric benchmark tailored to bimanual dexterous teleoperation. TeleOpBench contains 30 high-fidelity task environments that span pick-and-place, tool use, and collaborative manipulation, covering a broad spectrum of kinematic and force-interaction difficulty. Within this benchmark we implement four representative teleoperation modalities-(i) MoCap, (ii) VR device, (iii) arm-hand exoskeletons, and (iv) monocular vision tracking-and evaluate them with a common protocol and metric suite. To validate that performance in simulation is predictive of real-world behavior, we conduct mirrored experiments on a physical dual-arm platform equipped with two 6-DoF dexterous hands. Across 10 held-out tasks we observe a strong correlation between simulator and hardware performance, confirming the external validity of TeleOpBench. TeleOpBench establishes a common yardstick for teleoperation research and provides an extensible platform for future algorithmic and hardware innovation.
Abstract:Human image animation has recently gained significant attention due to advancements in generative models. However, existing methods still face two major challenges: (1) architectural limitations, most models rely on U-Net, which underperforms compared to the MM-DiT; and (2) the neglect of textual information, which can enhance controllability. In this work, we introduce DynamiCtrl, a novel framework that not only explores different pose-guided control structures in MM-DiT, but also reemphasizes the crucial role of text in this task. Specifically, we employ a Shared VAE encoder for both reference images and driving pose videos, eliminating the need for an additional pose encoder and simplifying the overall framework. To incorporate pose features into the full attention blocks, we propose Pose-adaptive Layer Norm (PadaLN), which utilizes adaptive layer normalization to encode sparse pose features. The encoded features are directly added to the visual input, preserving the spatiotemporal consistency of the backbone while effectively introducing pose control into MM-DiT. Furthermore, within the full attention mechanism, we align textual and visual features to enhance controllability. By leveraging text, we not only enable fine-grained control over the generated content, but also, for the first time, achieve simultaneous control over both background and motion. Experimental results verify the superiority of DynamiCtrl on benchmark datasets, demonstrating its strong identity preservation, heterogeneous character driving, background controllability, and high-quality synthesis. The project page is available at https://gulucaptain.github.io/DynamiCtrl/.
Abstract:Handling complex or nonlinear motion patterns has long posed challenges for video frame interpolation. Although recent advances in diffusion-based methods offer improvements over traditional optical flow-based approaches, they still struggle to generate sharp, temporally consistent frames in scenarios with large motion. To address this limitation, we introduce EDEN, an Enhanced Diffusion for high-quality large-motion vidEo frame iNterpolation. Our approach first utilizes a transformer-based tokenizer to produce refined latent representations of the intermediate frames for diffusion models. We then enhance the diffusion transformer with temporal attention across the process and incorporate a start-end frame difference embedding to guide the generation of dynamic motion. Extensive experiments demonstrate that EDEN achieves state-of-the-art results across popular benchmarks, including nearly a 10% LPIPS reduction on DAVIS and SNU-FILM, and an 8% improvement on DAIN-HD.
Abstract:Styled motion in-betweening is crucial for computer animation and gaming. However, existing methods typically encode motion styles by modeling whole-body motions, often overlooking the representation of individual body parts. This limitation reduces the flexibility of infilled motion, particularly in adjusting the motion styles of specific limbs independently. To overcome this challenge, we propose a novel framework that models motion styles at the body-part level, enhancing both the diversity and controllability of infilled motions. Our approach enables more nuanced and expressive animations by allowing precise modifications to individual limb motions while maintaining overall motion coherence. Leveraging phase-related insights, our framework employs periodic autoencoders to automatically extract the phase of each body part, capturing distinctive local style features. Additionally, we effectively decouple the motion source from synthesis control by integrating motion manifold learning and conditional generation techniques from both image and motion domains. This allows the motion source to generate high-quality motions across various styles, with extracted motion and style features readily available for controlled synthesis in subsequent tasks. Comprehensive evaluations demonstrate that our method achieves superior speed, robust generalization, and effective generation of extended motion sequences.
Abstract:In histopathology, intelligent diagnosis of Whole Slide Images (WSIs) is essential for automating and objectifying diagnoses, reducing the workload of pathologists. However, diagnostic models often face the challenge of forgetting previously learned data during incremental training on datasets from different sources. To address this issue, we propose a new framework PaGMIL to mitigate catastrophic forgetting in breast cancer WSI classification. Our framework introduces two key components into the common MIL model architecture. First, it leverages microscopic pathological prior to select more accurate and diverse representative patches for MIL. Secondly, it trains separate classification heads for each task and uses macroscopic pathological prior knowledge, treating the thumbnail as a prompt guide (PG) to select the appropriate classification head. We evaluate the continual learning performance of PaGMIL across several public breast cancer datasets. PaGMIL achieves a better balance between the performance of the current task and the retention of previous tasks, outperforming other continual learning methods. Our code will be open-sourced upon acceptance.
Abstract:AI methods, such as generative models and reinforcement learning, have recently been applied to combinatorial optimization (CO) problems, especially NP-hard ones. This paper compares such GPU-based methods with classical CPU-based methods on Maximum Independent Set (MIS). Experiments on standard graph families show that AI-based algorithms fail to outperform and, in many cases, to match the solution quality of the state-of-art classical solver KaMIS running on a single CPU. Some GPU-based methods even perform similarly to the simplest heuristic, degree-based greedy. Even with post-processing techniques like local search, AI-based methods still perform worse than CPU-based solvers. We develop a new mode of analysis to reveal that non-backtracking AI methods, e.g. LTFT (which is based on GFlowNets), end up reasoning similarly to the simplest degree-based greedy approach, and thus worse than KaMIS. We also find that CPU-based algorithms, notably KaMIS, have strong performance on sparse random graphs, which appears to refute a well-known conjectured upper bound for efficient algorithms from Coja-Oghlan & Efthymiou (2015).