Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Hongzhou Lin

IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method


Jun 11, 2020
Yossi Arjevani, Joan Bruna, Bugra Can, Mert Gürbüzbalaban, Stefanie Jegelka, Hongzhou Lin


  Access Paper or Ask Questions

Stochastic Optimization with Non-stationary Noise


Jun 09, 2020
Jingzhao Zhang, Hongzhou Lin, Subhro Das, Suvrit Sra, Ali Jadbabaie


  Access Paper or Ask Questions

On Complexity of Finding Stationary Points of Nonsmooth Nonconvex Functions


Feb 16, 2020
Jingzhao Zhang, Hongzhou Lin, Stefanie Jegelka, Ali Jadbabaie, Suvrit Sra


  Access Paper or Ask Questions

On the Complexity of Minimizing Convex Finite Sums Without Using the Indices of the Individual Functions


Feb 09, 2020
Yossi Arjevani, Amit Daniely, Stefanie Jegelka, Hongzhou Lin


  Access Paper or Ask Questions

An Inexact Variable Metric Proximal Point Algorithm for Generic Quasi-Newton Acceleration


Jul 20, 2018
Hongzhou Lin, Julien Mairal, Zaid Harchaoui


  Access Paper or Ask Questions

ResNet with one-neuron hidden layers is a Universal Approximator


Jul 04, 2018
Hongzhou Lin, Stefanie Jegelka


  Access Paper or Ask Questions

Catalyst Acceleration for First-order Convex Optimization: from Theory to Practice


Jun 19, 2018
Hongzhou Lin, Julien Mairal, Zaid Harchaoui

* Journal of Machine Learning Research (JMLR), 18(212):1--54, 2018 
* link to publisher website: http://jmlr.org/papers/volume18/17-748/17-748.pdf 

  Access Paper or Ask Questions

Catalyst Acceleration for Gradient-Based Non-Convex Optimization


Jun 09, 2017
Courtney Paquette, Hongzhou Lin, Dmitriy Drusvyatskiy, Julien Mairal, Zaid Harchaoui


  Access Paper or Ask Questions