Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method

Jun 11, 2020
Yossi Arjevani, Joan Bruna, Bugra Can, Mert Gürbüzbalaban, Stefanie Jegelka, Hongzhou Lin


  Access Paper or Ask Questions

Stochastic Optimization with Non-stationary Noise

Jun 09, 2020
Jingzhao Zhang, Hongzhou Lin, Subhro Das, Suvrit Sra, Ali Jadbabaie


  Access Paper or Ask Questions

On Complexity of Finding Stationary Points of Nonsmooth Nonconvex Functions

Feb 16, 2020
Jingzhao Zhang, Hongzhou Lin, Stefanie Jegelka, Ali Jadbabaie, Suvrit Sra


  Access Paper or Ask Questions

On the Complexity of Minimizing Convex Finite Sums Without Using the Indices of the Individual Functions

Feb 09, 2020
Yossi Arjevani, Amit Daniely, Stefanie Jegelka, Hongzhou Lin


  Access Paper or Ask Questions

An Inexact Variable Metric Proximal Point Algorithm for Generic Quasi-Newton Acceleration

Jul 20, 2018
Hongzhou Lin, Julien Mairal, Zaid Harchaoui


  Access Paper or Ask Questions

ResNet with one-neuron hidden layers is a Universal Approximator

Jul 04, 2018
Hongzhou Lin, Stefanie Jegelka


  Access Paper or Ask Questions

Catalyst Acceleration for First-order Convex Optimization: from Theory to Practice

Jun 19, 2018
Hongzhou Lin, Julien Mairal, Zaid Harchaoui

* Journal of Machine Learning Research (JMLR), 18(212):1--54, 2018 
* link to publisher website: http://jmlr.org/papers/volume18/17-748/17-748.pdf 

  Access Paper or Ask Questions

Catalyst Acceleration for Gradient-Based Non-Convex Optimization

Jun 09, 2017
Courtney Paquette, Hongzhou Lin, Dmitriy Drusvyatskiy, Julien Mairal, Zaid Harchaoui


  Access Paper or Ask Questions