Get our free extension to see links to code for papers anywhere online!Free extension: code links for papers anywhere!Free add-on: See code for papers anywhere!

Ahmed Khaled, Chi Jin

Large-scale machine learning problems make the cost of hyperparameter tuning ever more prohibitive. This creates a need for algorithms that can tune themselves on-the-fly. We formalize the notion of "tuning-free" algorithms that can match the performance of optimally-tuned optimization algorithms up to polylogarithmic factors given only loose hints on the relevant problem parameters. We consider in particular algorithms that can match optimally-tuned Stochastic Gradient Descent (SGD). When the domain of optimization is bounded, we show tuning-free matching of SGD is possible and achieved by several existing algorithms. We prove that for the task of minimizing a convex and smooth or Lipschitz function over an unbounded domain, tuning-free optimization is impossible. We discuss conditions under which tuning-free optimization is possible even over unbounded domains. In particular, we show that the recently proposed DoG and DoWG algorithms are tuning-free when the noise distribution is sufficiently well-behaved. For the task of finding a stationary point of a smooth and potentially nonconvex function, we give a variant of SGD that matches the best-known high-probability convergence rate for tuned SGD at only an additional polylogarithmic cost. However, we also give an impossibility result that shows no algorithm can hope to match the optimal expected convergence rate for tuned SGD with high probability.

Via

Jiawei Ge, Shange Tang, Jianqing Fan, Cong Ma, Chi Jin

A key challenge of modern machine learning systems is to achieve Out-of-Distribution (OOD) generalization -- generalizing to target data whose distribution differs from that of source data. Despite its significant importance, the fundamental question of ``what are the most effective algorithms for OOD generalization'' remains open even under the standard setting of covariate shift. This paper addresses this fundamental question by proving that, surprisingly, classical Maximum Likelihood Estimation (MLE) purely using source data (without any modification) achieves the minimax optimality for covariate shift under the well-specified setting. That is, no algorithm performs better than MLE in this setting (up to a constant factor), justifying MLE is all you need. Our result holds for a very rich class of parametric models, and does not require any boundedness condition on the density ratio. We illustrate the wide applicability of our framework by instantiating it to three concrete examples -- linear regression, logistic regression, and phase retrieval. This paper further complement the study by proving that, under the misspecified setting, MLE is no longer the optimal choice, whereas Maximum Weighted Likelihood Estimator (MWLE) emerges as minimax optimal in certain scenarios.

Via

Viraj Nadkarni, Jiachen Hu, Ranvir Rana, Chi Jin, Sanjeev Kulkarni, Pramod Viswanath

Automated Market Makers (AMMs) are major centers of matching liquidity supply and demand in Decentralized Finance. Their functioning relies primarily on the presence of liquidity providers (LPs) incentivized to invest their assets into a liquidity pool. However, the prices at which a pooled asset is traded is often more stale than the prices on centralized and more liquid exchanges. This leads to the LPs suffering losses to arbitrage. This problem is addressed by adapting market prices to trader behavior, captured via the classical market microstructure model of Glosten and Milgrom. In this paper, we propose the first optimal Bayesian and the first model-free data-driven algorithm to optimally track the external price of the asset. The notion of optimality that we use enforces a zero-profit condition on the prices of the market maker, hence the name ZeroSwap. This ensures that the market maker balances losses to informed traders with profits from noise traders. The key property of our approach is the ability to estimate the external market price without the need for price oracles or loss oracles. Our theoretical guarantees on the performance of both these algorithms, ensuring the stability and convergence of their price recommendations, are of independent interest in the theory of reinforcement learning. We empirically demonstrate the robustness of our algorithms to changing market conditions.

Via

Zihan Ding, Chi Jin

Score-based generative models like the diffusion model have been testified to be effective in modeling multi-modal data from image generation to reinforcement learning (RL). However, the inference process of diffusion model can be slow, which hinders its usage in RL with iterative sampling. We propose to apply the consistency model as an efficient yet expressive policy representation, namely consistency policy, with an actor-critic style algorithm for three typical RL settings: offline, offline-to-online and online. For offline RL, we demonstrate the expressiveness of generative models as policies from multi-modal data. For offline-to-online RL, the consistency policy is shown to be more computational efficient than diffusion policy, with a comparable performance. For online RL, the consistency policy demonstrates significant speedup and even higher average performances than the diffusion policy.

Via

Yuanhao Wang, Qinghua Liu, Chi Jin

Reinforcement learning from Human Feedback (RLHF) learns from preference signals, while standard Reinforcement Learning (RL) directly learns from reward signals. Preferences arguably contain less information than rewards, which makes preference-based RL seemingly more difficult. This paper theoretically proves that, for a wide range of preference models, we can solve preference-based RL directly using existing algorithms and techniques for reward-based RL, with small or no extra costs. Specifically, (1) for preferences that are drawn from reward-based probabilistic models, we reduce the problem to robust reward-based RL that can tolerate small errors in rewards; (2) for general arbitrary preferences where the objective is to find the von Neumann winner, we reduce the problem to multiagent reward-based RL which finds Nash equilibria for factored Markov games under a restricted set of policies. The latter case can be further reduce to adversarial MDP when preferences only depend on the final state. We instantiate all reward-based RL subroutines by concrete provable algorithms, and apply our theory to a large class of models including tabular MDPs and MDPs with generic function approximation. We further provide guarantees when K-wise comparisons are available.

Via

Chung-Wei Lee, Qinghua Liu, Yasin Abbasi-Yadkori, Chi Jin, Tor Lattimore, Csaba Szepesvári

We consider a contextual bandit problem with $S $ contexts and $A $ actions. In each round $t=1,2,\dots$ the learner observes a random context and chooses an action based on its past experience. The learner then observes a random reward whose mean is a function of the context and the action for the round. Under the assumption that the contexts can be lumped into $r\le \min\{S ,A \}$ groups such that the mean reward for the various actions is the same for any two contexts that are in the same group, we give an algorithm that outputs an $\epsilon$-optimal policy after using at most $\widetilde O(r (S +A )/\epsilon^2)$ samples with high probability and provide a matching $\widetilde\Omega(r (S +A )/\epsilon^2)$ lower bound. In the regret minimization setting, we give an algorithm whose cumulative regret up to time $T$ is bounded by $\widetilde O(\sqrt{r^3(S +A )T})$. To the best of our knowledge, we are the first to show the near-optimal sample complexity in the PAC setting and $\widetilde O(\sqrt{{poly}(r)(S+K)T})$ minimax regret in the online setting for this problem. We also show our algorithms can be applied to more general low-rank bandits and get improved regret bounds in some scenarios.

Via

Ahmed Khaled, Konstantin Mishchenko, Chi Jin

This paper proposes a new easy-to-implement parameter-free gradient-based optimizer: DoWG (Distance over Weighted Gradients). We prove that DoWG is efficient -- matching the convergence rate of optimally tuned gradient descent in convex optimization up to a logarithmic factor without tuning any parameters, and universal -- automatically adapting to both smooth and nonsmooth problems. While popular algorithms such as AdaGrad, Adam, or DoG compute a running average of the squared gradients, DoWG maintains a new distance-based weighted version of the running average, which is crucial to achieve the desired properties. To our best knowledge, DoWG is the first parameter-free, efficient, and universal algorithm that does not require backtracking search procedures. It is also the first parameter-free AdaGrad style algorithm that adapts to smooth optimization. To complement our theory, we also show empirically that DoWG trains at the edge of stability, and validate its effectiveness on practical machine learning tasks. This paper further uncovers the underlying principle behind the success of the AdaGrad family of algorithms by presenting a novel analysis of Normalized Gradient Descent (NGD), that shows NGD adapts to smoothness when it exists, with no change to the stepsize. This establishes the universality of NGD and partially explains the empirical observation that it trains at the edge of stability in a much more general setup compared to standard gradient descent. The latter might be of independent interest to the community.

Via

Qinghua Liu, Gellért Weisz, András György, Chi Jin, Csaba Szepesvári

While policy optimization algorithms have played an important role in recent empirical success of Reinforcement Learning (RL), the existing theoretical understanding of policy optimization remains rather limited -- they are either restricted to tabular MDPs or suffer from highly suboptimal sample complexity, especial in online RL where exploration is necessary. This paper proposes a simple efficient policy optimization framework -- Optimistic NPG for online RL. Optimistic NPG can be viewed as simply combining of the classic natural policy gradient (NPG) algorithm [Kakade, 2001] with optimistic policy evaluation subroutines to encourage exploration. For $d$-dimensional linear MDPs, Optimistic NPG is computationally efficient, and learns an $\varepsilon$-optimal policy within $\tilde{O}(d^2/\varepsilon^3)$ samples, which is the first computationally efficient algorithm whose sample complexity has the optimal dimension dependence $\tilde{\Theta}(d^2)$. It also improves over state-of-the-art results of policy optimization algorithms [Zanette et al., 2021] by a factor of $d$. For general function approximation that subsumes linear MDPs, Optimistic NPG, to our best knowledge, is also the first policy optimization algorithm that achieves the polynomial sample complexity for learning near-optimal policies.

Via

Zihan Ding, Yuanpei Chen, Allen Z. Ren, Shixiang Shane Gu, Hao Dong, Chi Jin

Generating human-like behavior on robots is a great challenge especially in dexterous manipulation tasks with robotic hands. Even in simulation with no sample constraints, scripting controllers is intractable due to high degrees of freedom, and manual reward engineering can also be hard and lead to non-realistic motions. Leveraging the recent progress on Reinforcement Learning from Human Feedback (RLHF), we propose a framework to learn a universal human prior using direct human preference feedback over videos, for efficiently tuning the RL policy on 20 dual-hand robot manipulation tasks in simulation, without a single human demonstration. One task-agnostic reward model is trained through iteratively generating diverse polices and collecting human preference over the trajectories; it is then applied for regularizing the behavior of polices in the fine-tuning stage. Our method empirically demonstrates more human-like behaviors on robot hands in diverse tasks including even unseen tasks, indicating its generalization capability.

Via

Jiawei Ge, Shange Tang, Jianqing Fan, Chi Jin

Unsupervised pretraining, which learns a useful representation using a large amount of unlabeled data to facilitate the learning of downstream tasks, is a critical component of modern large-scale machine learning systems. Despite its tremendous empirical success, the rigorous theoretical understanding of why unsupervised pretraining generally helps remains rather limited -- most existing results are restricted to particular methods or approaches for unsupervised pretraining with specialized structural assumptions. This paper studies a generic framework, where the unsupervised representation learning task is specified by an abstract class of latent variable models $\Phi$ and the downstream task is specified by a class of prediction functions $\Psi$. We consider a natural approach of using Maximum Likelihood Estimation (MLE) for unsupervised pretraining and Empirical Risk Minimization (ERM) for learning downstream tasks. We prove that, under a mild ''informative'' condition, our algorithm achieves an excess risk of $\tilde{\mathcal{O}}(\sqrt{\mathcal{C}_\Phi/m} + \sqrt{\mathcal{C}_\Psi/n})$ for downstream tasks, where $\mathcal{C}_\Phi, \mathcal{C}_\Psi$ are complexity measures of function classes $\Phi, \Psi$, and $m, n$ are the number of unlabeled and labeled data respectively. Comparing to the baseline of $\tilde{\mathcal{O}}(\sqrt{\mathcal{C}_{\Phi \circ \Psi}/n})$ achieved by performing supervised learning using only the labeled data, our result rigorously shows the benefit of unsupervised pretraining when $m \gg n$ and $\mathcal{C}_{\Phi\circ \Psi} > \mathcal{C}_\Psi$. This paper further shows that our generic framework covers a wide range of approaches for unsupervised pretraining, including factor models, Gaussian mixture models, and contrastive learning.

Via