School of Cyber Science and Engineering, Southeast University
Abstract:Vision-language models (VLMs) excel in various multimodal tasks but frequently suffer from poor calibration, resulting in misalignment between their verbalized confidence and response correctness. This miscalibration undermines user trust, especially when models confidently provide incorrect or fabricated information. In this work, we propose a novel Confidence Calibration through Semantic Perturbation (CSP) framework to improve the calibration of verbalized confidence for VLMs in response to object-centric queries. We first introduce a perturbed dataset where Gaussian noise is applied to the key object regions to simulate visual uncertainty at different confidence levels, establishing an explicit mapping between visual ambiguity and confidence levels. We further enhance calibration through a two-stage training process combining supervised fine-tuning on the perturbed dataset with subsequent preference optimization. Extensive experiments on popular benchmarks demonstrate that our method significantly improves the alignment between verbalized confidence and response correctness while maintaining or enhancing overall task performance. These results highlight the potential of semantic perturbation as a practical tool for improving the reliability and interpretability of VLMs.
Abstract:This paper provides a review of the NTIRE 2025 challenge on real-world face restoration, highlighting the proposed solutions and the resulting outcomes. The challenge focuses on generating natural, realistic outputs while maintaining identity consistency. Its goal is to advance state-of-the-art solutions for perceptual quality and realism, without imposing constraints on computational resources or training data. The track of the challenge evaluates performance using a weighted image quality assessment (IQA) score and employs the AdaFace model as an identity checker. The competition attracted 141 registrants, with 13 teams submitting valid models, and ultimately, 10 teams achieved a valid score in the final ranking. This collaborative effort advances the performance of real-world face restoration while offering an in-depth overview of the latest trends in the field.
Abstract:Existing co-salient object detection (CoSOD) methods generally employ a three-stage architecture (i.e., encoding, consensus extraction & dispersion, and prediction) along with a typical full fine-tuning paradigm. Although they yield certain benefits, they exhibit two notable limitations: 1) This architecture relies on encoded features to facilitate consensus extraction, but the meticulously extracted consensus does not provide timely guidance to the encoding stage. 2) This paradigm involves globally updating all parameters of the model, which is parameter-inefficient and hinders the effective representation of knowledge within the foundation model for this task. Therefore, in this paper, we propose an interaction-effective and parameter-efficient concise architecture for the CoSOD task, addressing two key limitations. It introduces, for the first time, a parameter-efficient prompt tuning paradigm and seamlessly embeds consensus into the prompts to formulate task-specific Visual Consensus Prompts (VCP). Our VCP aims to induce the frozen foundation model to perform better on CoSOD tasks by formulating task-specific visual consensus prompts with minimized tunable parameters. Concretely, the primary insight of the purposeful Consensus Prompt Generator (CPG) is to enforce limited tunable parameters to focus on co-salient representations and generate consensus prompts. The formulated Consensus Prompt Disperser (CPD) leverages consensus prompts to form task-specific visual consensus prompts, thereby arousing the powerful potential of pre-trained models in addressing CoSOD tasks. Extensive experiments demonstrate that our concise VCP outperforms 13 cutting-edge full fine-tuning models, achieving the new state of the art (with 6.8% improvement in F_m metrics on the most challenging CoCA dataset). Source code has been available at https://github.com/WJ-CV/VCP.
Abstract:Recent advancements in Large Language Models (LLMs) and the proliferation of Text-Attributed Graphs (TAGs) across various domains have positioned LLM-enhanced TAG learning as a critical research area. By utilizing rich graph descriptions, this paradigm leverages LLMs to generate high-quality embeddings, thereby enhancing the representational capacity of Graph Neural Networks (GNNs). However, the field faces significant challenges: (1) the absence of a unified framework to systematize the diverse optimization perspectives arising from the complex interactions between LLMs and GNNs, and (2) the lack of a robust method capable of handling real-world TAGs, which often suffer from texts and edge sparsity, leading to suboptimal performance. To address these challenges, we propose UltraTAG, a unified pipeline for LLM-enhanced TAG learning. UltraTAG provides a unified comprehensive and domain-adaptive framework that not only organizes existing methodologies but also paves the way for future advancements in the field. Building on this framework, we propose UltraTAG-S, a robust instantiation of UltraTAG designed to tackle the inherent sparsity issues in real-world TAGs. UltraTAG-S employs LLM-based text propagation and text augmentation to mitigate text sparsity, while leveraging LLM-augmented node selection techniques based on PageRank and edge reconfiguration strategies to address edge sparsity. Our extensive experiments demonstrate that UltraTAG-S significantly outperforms existing baselines, achieving improvements of 2.12\% and 17.47\% in ideal and sparse settings, respectively. Moreover, as the data sparsity ratio increases, the performance improvement of UltraTAG-S also rises, which underscores the effectiveness and robustness of UltraTAG-S.
Abstract:Instruction-based fine-tuning of large language models (LLMs) has achieved remarkable success in various natural language processing (NLP) tasks. Parameter-efficient fine-tuning (PEFT) methods, such as Mixture of LoRA Experts (MoLE), combine the efficiency of Low-Rank Adaptation (LoRA) with the versatility of Mixture of Experts (MoE) models, demonstrating significant potential for handling multiple downstream tasks. However, the existing routing mechanisms for MoLE often involve a trade-off between computational efficiency and predictive accuracy, and they fail to fully address the diverse expert selection demands across different transformer layers. In this work, we propose DynMoLE, a hybrid routing strategy that dynamically adjusts expert selection based on the Tsallis entropy of the router's probability distribution. This approach mitigates router uncertainty, enhances stability, and promotes more equitable expert participation, leading to faster convergence and improved model performance. Additionally, we introduce an auxiliary loss based on Tsallis entropy to further guide the model toward convergence with reduced uncertainty, thereby improving training stability and performance. Our extensive experiments on commonsense reasoning benchmarks demonstrate that DynMoLE achieves substantial performance improvements, outperforming LoRA by 9.6% and surpassing the state-of-the-art MoLE method, MoLA, by 2.3%. We also conduct a comprehensive ablation study to evaluate the contributions of DynMoLE's key components.
Abstract:We introduce OpenHuEval, the first benchmark for LLMs focusing on the Hungarian language and specifics. OpenHuEval is constructed from a vast collection of Hungarian-specific materials sourced from multiple origins. In the construction, we incorporated the latest design principles for evaluating LLMs, such as using real user queries from the internet, emphasizing the assessment of LLMs' generative capabilities, and employing LLM-as-judge to enhance the multidimensionality and accuracy of evaluations. Ultimately, OpenHuEval encompasses eight Hungarian-specific dimensions, featuring five tasks and 3953 questions. Consequently, OpenHuEval provides the comprehensive, in-depth, and scientifically accurate assessment of LLM performance in the context of the Hungarian language and its specifics. We evaluated current mainstream LLMs, including both traditional LLMs and recently developed Large Reasoning Models. The results demonstrate the significant necessity for evaluation and model optimization tailored to the Hungarian language and specifics. We also established the framework for analyzing the thinking processes of LRMs with OpenHuEval, revealing intrinsic patterns and mechanisms of these models in non-English languages, with Hungarian serving as a representative example. We will release OpenHuEval at https://github.com/opendatalab/OpenHuEval .
Abstract:Handling complex or nonlinear motion patterns has long posed challenges for video frame interpolation. Although recent advances in diffusion-based methods offer improvements over traditional optical flow-based approaches, they still struggle to generate sharp, temporally consistent frames in scenarios with large motion. To address this limitation, we introduce EDEN, an Enhanced Diffusion for high-quality large-motion vidEo frame iNterpolation. Our approach first utilizes a transformer-based tokenizer to produce refined latent representations of the intermediate frames for diffusion models. We then enhance the diffusion transformer with temporal attention across the process and incorporate a start-end frame difference embedding to guide the generation of dynamic motion. Extensive experiments demonstrate that EDEN achieves state-of-the-art results across popular benchmarks, including nearly a 10% LPIPS reduction on DAVIS and SNU-FILM, and an 8% improvement on DAIN-HD.
Abstract:Recently, a task of Single-Domain Generalized Object Detection (Single-DGOD) is proposed, aiming to generalize a detector to multiple unknown domains never seen before during training. Due to the unavailability of target-domain data, some methods leverage the multimodal capabilities of vision-language models, using textual prompts to estimate cross-domain information, enhancing the model's generalization capability. These methods typically use a single textual prompt, often referred to as the one-step prompt method. However, when dealing with complex styles such as the combination of rain and night, we observe that the performance of the one-step prompt method tends to be relatively weak. The reason may be that many scenes incorporate not just a single style but a combination of multiple styles. The one-step prompt method may not effectively synthesize combined information involving various styles. To address this limitation, we propose a new method, i.e., Style Evolving along Chain-of-Thought, which aims to progressively integrate and expand style information along the chain of thought, enabling the continual evolution of styles. Specifically, by progressively refining style descriptions and guiding the diverse evolution of styles, this approach enables more accurate simulation of various style characteristics and helps the model gradually learn and adapt to subtle differences between styles. Additionally, it exposes the model to a broader range of style features with different data distributions, thereby enhancing its generalization capability in unseen domains. The significant performance gains over five adverse-weather scenarios and the Real to Art benchmark demonstrate the superiorities of our method.
Abstract:Emotional information is essential for enhancing human-computer interaction and deepening image understanding. However, while deep learning has advanced image recognition, the intuitive understanding and precise control of emotional expression in images remain challenging. Similarly, music research largely focuses on theoretical aspects, with limited exploration of its emotional dimensions and their integration with visual arts. To address these gaps, we introduce EmoMV, an emotion-driven music-to-visual manipulation method that manipulates images based on musical emotions. EmoMV combines bottom-up processing of music elements-such as pitch and rhythm-with top-down application of these emotions to visual aspects like color and lighting. We evaluate EmoMV using a multi-scale framework that includes image quality metrics, aesthetic assessments, and EEG measurements to capture real-time emotional responses. Our results demonstrate that EmoMV effectively translates music's emotional content into visually compelling images, advancing multimodal emotional integration and opening new avenues for creative industries and interactive technologies.
Abstract:Vision-and-Language Navigation (VLN) is a challenging task that requires an agent to navigate through photorealistic environments following natural-language instructions. One main obstacle existing in VLN is data scarcity, leading to poor generalization performance over unseen environments. Tough data argumentation is a promising way for scaling up the dataset, how to generate VLN data both diverse and world-consistent remains problematic. To cope with this issue, we propose the world-consistent data generation (WCGEN), an efficacious data-augmentation framework satisfying both diversity and world-consistency, targeting at enhancing the generalizations of agents to novel environments. Roughly, our framework consists of two stages, the trajectory stage which leverages a point-cloud based technique to ensure spatial coherency among viewpoints, and the viewpoint stage which adopts a novel angle synthesis method to guarantee spatial and wraparound consistency within the entire observation. By accurately predicting viewpoint changes with 3D knowledge, our approach maintains the world-consistency during the generation procedure. Experiments on a wide range of datasets verify the effectiveness of our method, demonstrating that our data augmentation strategy enables agents to achieve new state-of-the-art results on all navigation tasks, and is capable of enhancing the VLN agents' generalization ability to unseen environments.