Charlie
Abstract:A core objective in recommender systems is to accurately model the distribution of user preferences over items to enable personalized recommendations. Recently, driven by the strong generative capabilities of large language models (LLMs), LLM-based generative recommendation has become increasingly popular. However, we observe that existing methods inevitably introduce systematic bias when estimating item-level preference distributions. Specifically, autoregressive generation suffers from incomplete coverage due to beam search pruning, while parallel generation distorts probabilities by assuming token independence. We attribute this issue to a fundamental modeling mismatch: these methods approximate item-level distributions via token-level generation, which inherently induces approximation errors. Through both theoretical analysis and empirical validation, we demonstrate that token-level generation cannot faithfully substitute item-level generation, leading to biased item distributions. To address this, we propose \textbf{Sim}ply \textbf{G}enerative \textbf{R}ecommendation (\textbf{SimGR}), a framework that directly models item-level preference distributions in a shared latent space and ranks items by similarity, thereby aligning the modeling objective with recommendation and mitigating distributional distortion. Extensive experiments across multiple datasets and LLM backbones show that SimGR consistently outperforms existing generative recommenders. Our code is available at https://anonymous.4open.science/r/SimGR-C408/
Abstract:Geometric foundation models show promise in 3D reconstruction, yet their progress is severely constrained by the scarcity of diverse, large-scale 3D annotations. While Internet videos offer virtually unlimited raw data, utilizing them as a scaling source for geometric learning is challenging due to the absence of ground-truth geometry and the presence of observational noise. To address this, we propose SAGE, a framework for Scalable Adaptation of GEometric foundation models from raw video streams. SAGE leverages a hierarchical mining pipeline to transform videos into training trajectories and hybrid supervision: (1) Informative training trajectory selection; (2) Sparse Geometric Anchoring via SfM point clouds for global structural guidance; and (3) Dense Differentiable Consistency via 3D Gaussian rendering for multi-view constraints. To prevent catastrophic forgetting, we introduce a regularization strategy using anchor data. Extensive experiments show that SAGE significantly enhances zero-shot generalization, reducing Chamfer Distance by 20-42% on unseen benchmarks (7Scenes, TUM-RGBD, Matterport3D) compared to state-of-the-art baselines. To our knowledge, SAGE pioneers the adaptation of geometric foundation models via Internet video, establishing a scalable paradigm for general-purpose 3D learning.
Abstract:In this report, we introduce ERNIE 5.0, a natively autoregressive foundation model desinged for unified multimodal understanding and generation across text, image, video, and audio. All modalities are trained from scratch under a unified next-group-of-tokens prediction objective, based on an ultra-sparse mixture-of-experts (MoE) architecture with modality-agnostic expert routing. To address practical challenges in large-scale deployment under diverse resource constraints, ERNIE 5.0 adopts a novel elastic training paradigm. Within a single pre-training run, the model learns a family of sub-models with varying depths, expert capacities, and routing sparsity, enabling flexible trade-offs among performance, model size, and inference latency in memory- or time-constrained scenarios. Moreover, we systematically address the challenges of scaling reinforcement learning to unified foundation models, thereby guaranteeing efficient and stable post-training under ultra-sparse MoE architectures and diverse multimodal settings. Extensive experiments demonstrate that ERNIE 5.0 achieves strong and balanced performance across multiple modalities. To the best of our knowledge, among publicly disclosed models, ERNIE 5.0 represents the first production-scale realization of a trillion-parameter unified autoregressive model that supports both multimodal understanding and generation. To facilitate further research, we present detailed visualizations of modality-agnostic expert routing in the unified model, alongside comprehensive empirical analysis of elastic training, aiming to offer profound insights to the community.
Abstract:Reconstructing dynamic hand-object interactions from monocular videos is critical for dexterous manipulation data collection and creating realistic digital twins for robotics and VR. However, current methods face two prohibitive barriers: (1) reliance on neural rendering often yields fragmented, non-simulation-ready geometries under heavy occlusion, and (2) dependence on brittle Structure-from-Motion (SfM) initialization leads to frequent failures on in-the-wild footage. To overcome these limitations, we introduce AGILE, a robust framework that shifts the paradigm from reconstruction to agentic generation for interaction learning. First, we employ an agentic pipeline where a Vision-Language Model (VLM) guides a generative model to synthesize a complete, watertight object mesh with high-fidelity texture, independent of video occlusions. Second, bypassing fragile SfM entirely, we propose a robust anchor-and-track strategy. We initialize the object pose at a single interaction onset frame using a foundation model and propagate it temporally by leveraging the strong visual similarity between our generated asset and video observations. Finally, a contact-aware optimization integrates semantic, geometric, and interaction stability constraints to enforce physical plausibility. Extensive experiments on HO3D, DexYCB, and in-the-wild videos reveal that AGILE outperforms baselines in global geometric accuracy while demonstrating exceptional robustness on challenging sequences where prior art frequently collapses. By prioritizing physical validity, our method produces simulation-ready assets validated via real-to-sim retargeting for robotic applications.
Abstract:Is the standard weight decay in AdamW truly optimal? Although AdamW decouples weight decay from adaptive gradient scaling, a fundamental conflict remains: the Radial Tug-of-War. In deep learning, gradients tend to increase parameter norms to expand effective capacity while steering directions to learn features, whereas weight decay indiscriminately suppresses norm growth. This push--pull interaction induces radial oscillations, injecting noise into Adam's second-moment estimates and potentially degrading delicate tangential feature learning. We argue that magnitude and direction play distinct roles and should be decoupled in optimizer dynamics. We propose Orthogonal Dynamics Decoupling and instantiate it as AdamO: an SGD-style update handles the one-dimensional norm control, while Adam's adaptive preconditioning is confined to the tangential subspace. AdamO further incorporates curvature-adaptive radial step sizing and architecture-aware rules and projections for scale-invariant layers and low-dimensional parameters. Experiments on vision and language tasks show that AdamO improves generalization and stability over AdamW without introducing additional complex constraints.
Abstract:Large vision-language models have achieved remarkable progress in visual reasoning, yet most existing systems rely on single-step or text-only reasoning, limiting their ability to iteratively refine understanding across multiple visual contexts. To address this limitation, we introduce a new multi-round visual reasoning benchmark with training and test sets spanning both detection and segmentation tasks, enabling systematic evaluation under iterative reasoning scenarios. We further propose RegionReasoner, a reinforcement learning framework that enforces grounded reasoning by requiring each reasoning trace to explicitly cite the corresponding reference bounding boxes, while maintaining semantic coherence via a global-local consistency reward. This reward extracts key objects and nouns from both global scene captions and region-level captions, aligning them with the reasoning trace to ensure consistency across reasoning steps. RegionReasoner is optimized with structured rewards combining grounding fidelity and global-local semantic alignment. Experiments on detection and segmentation tasks show that RegionReasoner-7B, together with our newly introduced benchmark RegionDial-Bench, considerably improves multi-round reasoning accuracy, spatial grounding precision, and global-local consistency, establishing a strong baseline for this emerging research direction.
Abstract:The transition from fitting empirical data to achieving true human utility is fundamentally constrained by a granularity mismatch, where fine-grained autoregressive generation is often supervised by coarse or uniform signals. This position paper advocates Token Priority as the essential bridge, formalizing Supervised Fine-Tuning (SFT) not as simple optimization but as a precise distribution reshaping process that aligns raw data with the ideal alignment manifold. We analyze recent breakthroughs through this unified lens, categorizing them into two distinct regimes: Positive Priority for noise filtration and Signed Priority for toxic modes unlearning. We revisit existing progress and limitations, identify key challenges, and suggest directions for future research.
Abstract:We investigate the role of feature superposition in the emergence of power-law training dynamics using a teacher-student framework. We first derive an analytic theory for training without superposition, establishing that the power-law training exponent depends on both the input data statistics and channel importance. Remarkably, we discover that a superposition bottleneck induces a transition to a universal power-law exponent of $\sim 1$, independent of data and channel statistics. This one over time training with superposition represents an up to tenfold acceleration compared to the purely sequential learning that takes place in the absence of superposition. Our finding that superposition leads to rapid training with a data-independent power law exponent may have important implications for a wide range of neural networks that employ superposition, including production-scale large language models.
Abstract:Recent large language models (LLMs) perform strongly on mathematical benchmarks yet often misapply lemmas, importing conclusions without validating assumptions. We formalize lemma$-$judging as a structured prediction task: given a statement and a candidate lemma, the model must output a precondition check and a conclusion$-$utility check, from which a usefulness decision is derived. We present RULES, which encodes this specification via a two$-$section output and trains with reinforcement learning plus section$-$aware loss masking to assign penalty to the section responsible for errors. Training and evaluation draw on diverse natural language and formal proof corpora; robustness is assessed with a held$-$out perturbation suite; and end$-$to$-$end evaluation spans competition$-$style, perturbation$-$aligned, and theorem$-$based problems across various LLMs. Results show consistent in$-$domain gains over both a vanilla model and a single$-$label RL baseline, larger improvements on applicability$-$breaking perturbations, and parity or modest gains on end$-$to$-$end tasks; ablations indicate that the two$-$section outputs and section$-$aware reinforcement are both necessary for robustness.
Abstract:Long-term weather forecasting is critical for socioeconomic planning and disaster preparedness. While recent approaches employ finetuning to extend prediction horizons, they remain constrained by the issues of catastrophic forgetting, error accumulation, and high training overhead. To address these limitations, we present a novel pipeline across pretraining, finetuning and forecasting to enhance long-context modeling while reducing computational overhead. First, we introduce an Efficient Multi-scale Transformer (EMFormer) to extract multi-scale features through a single convolution in both training and inference. Based on the new architecture, we further employ an accumulative context finetuning to improve temporal consistency without degrading short-term accuracy. Additionally, we propose a composite loss that dynamically balances different terms via a sinusoidal weighting, thereby adaptively guiding the optimization trajectory throughout pretraining and finetuning. Experiments show that our approach achieves strong performance in weather forecasting and extreme event prediction, substantially improving long-term forecast accuracy. Moreover, EMFormer demonstrates strong generalization on vision benchmarks (ImageNet-1K and ADE20K) while delivering a 5.69x speedup over conventional multi-scale modules.