Abstract:Face aging has become a crucial task in computer vision, with applications ranging from entertainment to healthcare. However, existing methods struggle with achieving a realistic and seamless transformation across the entire lifespan, especially when handling large age gaps or extreme head poses. The core challenge lies in balancing age accuracy and identity preservation--what we refer to as the Age-ID trade-off. Most prior methods either prioritize age transformation at the expense of identity consistency or vice versa. In this work, we address this issue by proposing a two-pass face aging framework, named Cradle2Cane, based on few-step text-to-image (T2I) diffusion models. The first pass focuses on solving age accuracy by introducing an adaptive noise injection (AdaNI) mechanism. This mechanism is guided by including prompt descriptions of age and gender for the given person as the textual condition. Also, by adjusting the noise level, we can control the strength of aging while allowing more flexibility in transforming the face. However, identity preservation is weakly ensured here to facilitate stronger age transformations. In the second pass, we enhance identity preservation while maintaining age-specific features by conditioning the model on two identity-aware embeddings (IDEmb): SVR-ArcFace and Rotate-CLIP. This pass allows for denoising the transformed image from the first pass, ensuring stronger identity preservation without compromising the aging accuracy. Both passes are jointly trained in an end-to-end way. Extensive experiments on the CelebA-HQ test dataset, evaluated through Face++ and Qwen-VL protocols, show that our Cradle2Cane outperforms existing face aging methods in age accuracy and identity consistency.
Abstract:Offline reinforcement learning (RL) heavily relies on the coverage of pre-collected data over the target policy's distribution. Existing studies aim to improve data-policy coverage to mitigate distributional shifts, but overlook security risks from insufficient coverage, and the single-step analysis is not consistent with the multi-step decision-making nature of offline RL. To address this, we introduce the sequence-level concentrability coefficient to quantify coverage, and reveal its exponential amplification on the upper bound of estimation errors through theoretical analysis. Building on this, we propose the Collapsing Sequence-Level Data-Policy Coverage (CSDPC) poisoning attack. Considering the continuous nature of offline RL data, we convert state-action pairs into decision units, and extract representative decision patterns that capture multi-step behavior. We identify rare patterns likely to cause insufficient coverage, and poison them to reduce coverage and exacerbate distributional shifts. Experiments show that poisoning just 1% of the dataset can degrade agent performance by 90%. This finding provides new perspectives for analyzing and safeguarding the security of offline RL.
Abstract:Tiny object detection (TOD) reveals a fundamental flaw in feature pyramid networks: high-level features (P5-P6) frequently receive zero positive anchors under standard label assignment protocols, leaving their semantic representations untrained due to exclusion from loss computation. This creates dual deficiencies: (1) Stranded high-level features become semantic dead-ends without gradient updates, while (2) low-level features lack essential semantic context for robust classification. We propose E-FPN-BS that systematically converts wasted high-level semantics into low-level feature enhancements. To address these issues, we propose E-FPN-BS, a novel architecture integrating multi-scale feature enhancement and adaptive optimization. First, our Context Enhancement Module(CEM) employs dual-branch processing to align and compress high-level features for effective global-local fusion. Second, the Foreground-Background Separation Module (FBSM) generates spatial gating masks that dynamically amplify discriminative regions. To address gradient imbalance across object scales, we further propose a Dynamic Gradient-Balanced Loss (DCLoss) that automatically modulates loss contributions via scale-aware gradient equilibrium. Extensive experiments across multiple benchmark datasets demonstrate the outstanding performance and generalization ability of our approach.
Abstract:Text-to-Image (T2I) diffusion models have made remarkable advancements in generative modeling; however, they face a trade-off between inference speed and image quality, posing challenges for efficient deployment. Existing distilled T2I models can generate high-fidelity images with fewer sampling steps, but often struggle with diversity and quality, especially in one-step models. From our analysis, we observe redundant computations in the UNet encoders. Our findings suggest that, for T2I diffusion models, decoders are more adept at capturing richer and more explicit semantic information, while encoders can be effectively shared across decoders from diverse time steps. Based on these observations, we introduce the first Time-independent Unified Encoder TiUE for the student model UNet architecture, which is a loop-free image generation approach for distilling T2I diffusion models. Using a one-pass scheme, TiUE shares encoder features across multiple decoder time steps, enabling parallel sampling and significantly reducing inference time complexity. In addition, we incorporate a KL divergence term to regularize noise prediction, which enhances the perceptual realism and diversity of the generated images. Experimental results demonstrate that TiUE outperforms state-of-the-art methods, including LCM, SD-Turbo, and SwiftBrushv2, producing more diverse and realistic results while maintaining the computational efficiency.
Abstract:Text-to-SQL is a fundamental task in natural language processing that seeks to translate natural language questions into meaningful and executable SQL queries. While existing datasets are extensive and primarily focus on business scenarios and operational logic, they frequently lack coverage of domain-specific knowledge and complex mathematical reasoning. To address this gap, we present a novel dataset tailored for complex reasoning and chain-of-thought analysis in SQL inference, encompassing physical, arithmetic, commonsense, and hypothetical reasoning. The dataset consists of 4,038 English questions, each paired with a unique SQL query and accompanied by 12,114 step-by-step reasoning annotations, spanning 45 databases across diverse domains. Experimental results demonstrate that LogicCat substantially increases the difficulty for state-of-the-art models, with the highest execution accuracy reaching only 14.96%. Incorporating our chain-of-thought annotations boosts performance to 33.96%. Benchmarking leading public methods on Spider and BIRD further underscores the unique challenges presented by LogicCat, highlighting the significant opportunities for advancing research in robust, reasoning-driven text-to-SQL systems. We have released our dataset code at https://github.com/Ffunkytao/LogicCat.
Abstract:We propose a neural network-based computational framework for the simultaneous optimization of structural topology, curved layers, and path orientations to achieve strong anisotropic strength in fiber-reinforced thermoplastic composites while ensuring manufacturability. Our framework employs three implicit neural fields to represent geometric shape, layer sequence, and fiber orientation. This enables the direct formulation of both design and manufacturability objectives - such as anisotropic strength, structural volume, machine motion control, layer curvature, and layer thickness - into an integrated and differentiable optimization process. By incorporating these objectives as loss functions, the framework ensures that the resultant composites exhibit optimized mechanical strength while remaining its manufacturability for filament-based multi-axis 3D printing across diverse hardware platforms. Physical experiments demonstrate that the composites generated by our co-optimization method can achieve an improvement of up to 33.1% in failure loads compared to composites with sequentially optimized structures and manufacturing sequences.
Abstract:High-precision ranging plays a crucial role in future 6G Integrated Sensing and Communication (ISAC) systems. To improve the ranging performance while maximizing the resource utilization efficiency, future 6G ISAC networks have to reuse data payload signals for both communication and sensing, whose inherent randomness may deteriorate the ranging performance. To address this issue, this paper investigates the power allocation (PA) design for an OFDM-based ISAC system under random signaling, aiming to reduce the ranging sidelobe level of both periodic and aperiodic auto-correlation functions (P-ACF and A-ACF) of the ISAC signal. Towards that end, we first derive the closed-form expressions of the average squared P-ACF and A-ACF, and then propose to minimize the expectation of the integrated sidelobe level (EISL) under arbitrary constellation mapping. We then rigorously prove that the uniform PA scheme achieves the global minimum of the EISL for both P-ACF and A-ACF. As a step further, we show that this scheme also minimizes the P-ACF sidelobe level at every lag. Moreover, we extend our analysis to the P-ACF case with frequency-domain zero-padding, which is a typical approach to improve the ranging resolution. We reveal that there exists a tradeoff between sidelobe level and mainlobe width, and propose a project gradient descent algorithm to seek a locally optimal PA scheme that reduces the EISL. Finally, we validate our theoretical findings through extensive simulation results, confirming the effectiveness of the proposed PA methods in reducing the ranging sidelobe level for random OFDM signals.
Abstract:The exponential growth of online content has posed significant challenges to ID-based models in industrial recommendation systems, ranging from extremely high cardinality and dynamically growing ID space, to highly skewed engagement distributions, to prediction instability as a result of natural id life cycles (e.g, the birth of new IDs and retirement of old IDs). To address these issues, many systems rely on random hashing to handle the id space and control the corresponding model parameters (i.e embedding table). However, this approach introduces data pollution from multiple ids sharing the same embedding, leading to degraded model performance and embedding representation instability. This paper examines these challenges and introduces Semantic ID prefix ngram, a novel token parameterization technique that significantly improves the performance of the original Semantic ID. Semantic ID prefix ngram creates semantically meaningful collisions by hierarchically clustering items based on their content embeddings, as opposed to random assignments. Through extensive experimentation, we demonstrate that Semantic ID prefix ngram not only addresses embedding instability but also significantly improves tail id modeling, reduces overfitting, and mitigates representation shifts. We further highlight the advantages of Semantic ID prefix ngram in attention-based models that contextualize user histories, showing substantial performance improvements. We also report our experience of integrating Semantic ID into Meta production Ads Ranking system, leading to notable performance gains and enhanced prediction stability in live deployments.
Abstract:Multimodal learning combining pathology images and genomic sequences enhances cancer survival analysis but faces clinical implementation barriers due to limited access to genomic sequencing in under-resourced regions. To enable survival prediction using only whole-slide images (WSI), we propose the Visual-Genomic Answering-Guided Transformer (VGAT), a framework integrating Visual Question Answering (VQA) techniques for genomic modality reconstruction. By adapting VQA's text feature extraction approach, we derive stable genomic representations that circumvent dimensionality challenges in raw genomic data. Simultaneously, a cluster-based visual prompt module selectively enhances discriminative WSI patches, addressing noise from unfiltered image regions. Evaluated across five TCGA datasets, VGAT outperforms existing WSI-only methods, demonstrating the viability of genomic-informed inference without sequencing. This approach bridges multimodal research and clinical feasibility in resource-constrained settings. The code link is https://github.com/CZZZZZZZZZZZZZZZZZ/VGAT.
Abstract:Cooperative transportation, a key aspect of logistics cyber-physical systems (CPS), is typically approached using dis tributed control and optimization-based methods. The distributed control methods consume less time, but poorly handle and extend to multiple constraints. Instead, optimization-based methods handle constraints effectively, but they are usually centralized, time-consuming and thus not easily scalable to numerous robots. To overcome drawbacks of both, we propose a novel cooperative transportation method for nonholonomic mobile robots by im proving conventional formation control, which is distributed, has a low time-complexity and accommodates scalable constraints. The proposed control-based method is testified on a cable suspended payload and divided into two parts, including robot trajectory generation and trajectory tracking. Unlike most time consuming trajectory generation methods, ours can generate trajectories with only constant time-complexity, needless of global maps. As for trajectory tracking, our control-based method not only scales easily to multiple constraints as those optimization based methods, but reduces their time-complexity from poly nomial to linear. Simulations and experiments can verify the feasibility of our method.