for the Alzheimer's Disease Neuroimaging Initiative
Abstract:Graph contrastive learning has been successfully applied in text classification due to its remarkable ability for self-supervised node representation learning. However, explicit graph augmentations may lead to a loss of semantics in the contrastive views. Secondly, existing methods tend to overlook edge features and the varying significance of node features during multi-graph learning. Moreover, the contrastive loss suffer from false negatives. To address these limitations, we propose a novel method of contrastive multi-graph learning with neighbor hierarchical sifting for semi-supervised text classification, namely ConNHS. Specifically, we exploit core features to form a multi-relational text graph, enhancing semantic connections among texts. By separating text graphs, we provide diverse views for contrastive learning. Our approach ensures optimal preservation of the graph information, minimizing data loss and distortion. Then, we separately execute relation-aware propagation and cross-graph attention propagation, which effectively leverages the varying correlations between nodes and edge features while harmonising the information fusion across graphs. Subsequently, we present the neighbor hierarchical sifting loss (NHS) to refine the negative selection. For one thing, following the homophily assumption, NHS masks first-order neighbors of the anchor and positives from being negatives. For another, NHS excludes the high-order neighbors analogous to the anchor based on their similarities. Consequently, it effectively reduces the occurrence of false negatives, preventing the expansion of the distance between similar samples in the embedding space. Our experiments on ThuCNews, SogouNews, 20 Newsgroups, and Ohsumed datasets achieved 95.86\%, 97.52\%, 87.43\%, and 70.65\%, which demonstrates competitive results in semi-supervised text classification.
Abstract:Text-to-image diffusion models have demonstrated tremendous success in synthesizing visually stunning images given textual instructions. Despite remarkable progress in creating high-fidelity visuals, text-to-image models can still struggle with precisely rendering subjects, such as text spelling. To address this challenge, this paper explores using additional conditions of an image that provides visual guidance of the particular subjects for diffusion models to generate. In addition, this reference condition empowers the model to be conditioned in ways that the vocabularies of the text tokenizer cannot adequately represent, and further extends the model's generalization to novel capabilities such as generating non-English text spellings. We develop several small-scale expert plugins that efficiently endow a Stable Diffusion model with the capability to take different references. Each plugin is trained with auxiliary networks and loss functions customized for applications such as English scene-text generation, multi-lingual scene-text generation, and logo-image generation. Our expert plugins demonstrate superior results than the existing methods on all tasks, each containing only 28.55M trainable parameters.
Abstract:Optical flow estimation is extensively used in autonomous driving and video editing. While existing models demonstrate state-of-the-art performance across various benchmarks, the robustness of these methods has been infrequently investigated. Despite some research focusing on the robustness of optical flow models against adversarial attacks, there has been a lack of studies investigating their robustness to common corruptions. Taking into account the unique temporal characteristics of optical flow, we introduce 7 temporal corruptions specifically designed for benchmarking the robustness of optical flow models, in addition to 17 classical single-image corruptions, in which advanced PSF Blur simulation method is performed. Two robustness benchmarks, KITTI-FC and GoPro-FC, are subsequently established as the first corruption robustness benchmark for optical flow estimation, with Out-Of-Domain (OOD) and In-Domain (ID) settings to facilitate comprehensive studies. Robustness metrics, Corruption Robustness Error (CRE), Corruption Robustness Error ratio (CREr), and Relative Corruption Robustness Error (RCRE) are further introduced to quantify the optical flow estimation robustness. 29 model variants from 15 optical flow methods are evaluated, yielding 10 intriguing observations, such as 1) the absolute robustness of the model is heavily dependent on the estimation performance; 2) the corruptions that diminish local information are more serious than that reduce visual effects. We also give suggestions for the design and application of optical flow models. We anticipate that our benchmark will serve as a foundational resource for advancing research in robust optical flow estimation. The benchmarks and source code will be released at https://github.com/ZhonghuaYi/optical_flow_robustness_benchmark.
Abstract:Event cameras, with high temporal resolution and high dynamic range, have limited research on the inter-modality local feature extraction and matching of event-image data. We propose EI-Nexus, an unmediated and flexible framework that integrates two modality-specific keypoint extractors and a feature matcher. To achieve keypoint extraction across viewpoint and modality changes, we bring Local Feature Distillation (LFD), which transfers the viewpoint consistency from a well-learned image extractor to the event extractor, ensuring robust feature correspondence. Furthermore, with the help of Context Aggregation (CA), a remarkable enhancement is observed in feature matching. We further establish the first two inter-modality feature matching benchmarks, MVSEC-RPE and EC-RPE, to assess relative pose estimation on event-image data. Our approach outperforms traditional methods that rely on explicit modal transformation, offering more unmediated and adaptable feature extraction and matching, achieving better keypoint similarity and state-of-the-art results on the MVSEC-RPE and EC-RPE benchmarks. The source code and benchmarks will be made publicly available at https://github.com/ZhonghuaYi/EI-Nexus_official.
Abstract:As Large Language Models (LLMs) become increasingly integrated into various facets of society, a significant portion of online text consequently become synthetic. This raises concerns about bias amplification, a phenomenon where models trained on synthetic data amplify the pre-existing biases over successive training iterations. Previous literature seldom discusses bias amplification as an independent issue from model collapse. In this work, we address the gap in understanding the bias amplification of LLMs with four main contributions. Firstly, we propose a theoretical framework, defining the necessary and sufficient conditions for its occurrence, and emphasizing that it occurs independently of model collapse. Using statistical simulations with weighted maximum likelihood estimation, we demonstrate the framework and show how bias amplification arises without the sampling and functional form issues that typically drive model collapse. Secondly, we conduct experiments with GPT-2 to empirically demonstrate bias amplification, specifically examining open-ended generational political bias with a benchmark we developed. We observe that GPT-2 exhibits a right-leaning bias in sentence continuation tasks and that the bias progressively increases with iterative fine-tuning on synthetic data generated by previous iterations. Thirdly, we explore three potential mitigation strategies: Overfitting, Preservation, and Accumulation. We find that both Preservation and Accumulation effectively mitigate bias amplification and model collapse. Finally, using novel mechanistic interpretation techniques, we demonstrate that in the GPT-2 experiments, bias amplification and model collapse are driven by distinct sets of neurons, which aligns with our theoretical framework.
Abstract:Graph contrastive learning (GCL) has been widely applied to text classification tasks due to its ability to generate self-supervised signals from unlabeled data, thus facilitating model training. However, existing GCL-based text classification methods often suffer from negative sampling bias, where similar nodes are incorrectly paired as negative pairs. This can lead to over-clustering, where instances of the same class are divided into different clusters. To address the over-clustering issue, we propose an innovative GCL-based method of graph contrastive learning via cluster-refined negative sampling for semi-supervised text classification, namely ClusterText. Firstly, we combine the pre-trained model Bert with graph neural networks to learn text representations. Secondly, we introduce a clustering refinement strategy, which clusters the learned text representations to obtain pseudo labels. For each text node, its negative sample set is drawn from different clusters. Additionally, we propose a self-correction mechanism to mitigate the loss of true negative samples caused by clustering inconsistency. By calculating the Euclidean distance between each text node and other nodes within the same cluster, distant nodes are still selected as negative samples. Our proposed ClusterText demonstrates good scalable computing, as it can effectively extract important information from from a large amount of data. Experimental results demonstrate the superiority of ClusterText in text classification tasks.
Abstract:Recent advancements in timestep-distilled diffusion models have enabled high-quality image generation that rivals non-distilled multi-step models, but with significantly fewer inference steps. While such models are attractive for applications due to the low inference cost and latency, fine-tuning them with a naive diffusion objective would result in degraded and blurry outputs. An intuitive alternative is to repeat the diffusion distillation process with a fine-tuned teacher model, which produces good results but is cumbersome and computationally intensive; the distillation training usually requires magnitude higher of training compute compared to fine-tuning for specific image styles. In this paper, we present an algorithm named pairwise sample optimization (PSO), which enables the direct fine-tuning of an arbitrary timestep-distilled diffusion model. PSO introduces additional reference images sampled from the current time-step distilled model, and increases the relative likelihood margin between the training images and reference images. This enables the model to retain its few-step generation ability, while allowing for fine-tuning of its output distribution. We also demonstrate that PSO is a generalized formulation which can be flexibly extended to both offline-sampled and online-sampled pairwise data, covering various popular objectives for diffusion model preference optimization. We evaluate PSO in both preference optimization and other fine-tuning tasks, including style transfer and concept customization. We show that PSO can directly adapt distilled models to human-preferred generation with both offline and online-generated pairwise preference image data. PSO also demonstrates effectiveness in style transfer and concept customization by directly tuning timestep-distilled diffusion models.
Abstract:The development of unbiased large language models is widely recognized as crucial, yet existing benchmarks fall short in detecting biases due to limited scope, contamination, and lack of a fairness baseline. SAGED(-Bias) is the first holistic benchmarking pipeline to address these problems. The pipeline encompasses five core stages: scraping materials, assembling benchmarks, generating responses, extracting numeric features, and diagnosing with disparity metrics. SAGED includes metrics for max disparity, such as impact ratio, and bias concentration, such as Max Z-scores. Noticing that assessment tool bias and contextual bias in prompts can distort evaluation, SAGED implements counterfactual branching and baseline calibration for mitigation. For demonstration, we use SAGED on G20 Countries with popular 8b-level models including Gemma2, Llama3.1, Mistral, and Qwen2. With sentiment analysis, we find that while Mistral and Qwen2 show lower max disparity and higher bias concentration than Gemma2 and Llama3.1, all models are notably biased against countries like Russia and (except for Qwen2) China. With further experiments to have models role-playing U.S. (vice-/former-) presidents, we see bias amplifies and shifts in heterogeneous directions. Moreover, we see Qwen2 and Mistral not engage in role-playing, while Llama3.1 and Gemma2 role-play Trump notably more intensively than Biden and Harris, indicating role-playing performance bias in these models.
Abstract:This paper presents P2U-SLAM, a visual Simultaneous Localization And Mapping (SLAM) system with a wide Field of View (FoV) camera, which utilizes pose uncertainty and point uncertainty. While the wide FoV enables considerable repetitive observations of historical map points for matching cross-view features, the data properties of the historical map points and the poses of historical keyframes have changed during the optimization process. The neglect of data property changes triggers the absence of a partial information matrix in optimization and leads to the risk of long-term positioning performance degradation. The purpose of our research is to reduce the risk of the wide field of view visual input to the SLAM system. Based on the conditional probability model, this work reveals the definite impact of the above data properties changes on the optimization process, concretizes it as point uncertainty and pose uncertainty, and gives a specific mathematical form. P2U-SLAM respectively embeds point uncertainty and pose uncertainty into the tracking module and local mapping, and updates these uncertainties after each optimization operation including local mapping, map merging, and loop closing. We present an exhaustive evaluation in 27 sequences from two popular public datasets with wide-FoV visual input. P2U-SLAM shows excellent performance compared with other state-of-the-art methods. The source code will be made publicly available at https://github.com/BambValley/P2U-SLAM.
Abstract:This study introduces a shared-control approach for collision avoidance in a self-balancing riding ballbot, called PURE, marked by its dynamic stability, omnidirectional movement, and hands-free interface. Integrated with a sensor array and a novel Passive Artificial Potential Field (PAPF) method, PURE provides intuitive navigation with deceleration assistance and haptic/audio feedback, effectively mitigating collision risks. This approach addresses the limitations of traditional APF methods, such as control oscillations and unnecessary speed reduction in challenging scenarios. A human-robot interaction experiment, with 20 manual wheelchair users and able-bodied individuals, was conducted to evaluate the performance of indoor navigation and obstacle avoidance with the proposed shared-control algorithm. Results indicated that shared-control significantly reduced collisions and cognitive load without affecting travel speed, offering intuitive and safe operation. These findings highlight the shared-control system's suitability for enhancing collision avoidance in self-balancing mobility devices, a relatively unexplored area in assistive mobility research.