Abstract:We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations in an end-to-end fashion for challenging graph-constrained architectural layout generation tasks. The proposed graph-Transformer-based generator includes a novel graph Transformer encoder that combines graph convolutions and self-attentions in a Transformer to model both local and global interactions across connected and non-connected graph nodes. Specifically, the proposed connected node attention (CNA) and non-connected node attention (NNA) aim to capture the global relations across connected nodes and non-connected nodes in the input graph, respectively. The proposed graph modeling block (GMB) aims to exploit local vertex interactions based on a house layout topology. Moreover, we propose a new node classification-based discriminator to preserve the high-level semantic and discriminative node features for different house components. To maintain the relative spatial relationships between ground truth and predicted graphs, we also propose a novel graph-based cycle-consistency loss. Finally, we propose a novel self-guided pre-training method for graph representation learning. This approach involves simultaneous masking of nodes and edges at an elevated mask ratio (i.e., 40%) and their subsequent reconstruction using an asymmetric graph-centric autoencoder architecture. This method markedly improves the model's learning proficiency and expediency. Experiments on three challenging graph-constrained architectural layout generation tasks (i.e., house layout generation, house roof generation, and building layout generation) with three public datasets demonstrate the effectiveness of the proposed method in terms of objective quantitative scores and subjective visual realism. New state-of-the-art results are established by large margins on these three tasks.
Abstract:The advancement of text-driven 3D content editing has been blessed by the progress from 2D generative diffusion models. However, a major obstacle hindering the widespread adoption of 3D content editing is its time-intensive processing. This challenge arises from the iterative and refining steps required to achieve consistent 3D outputs from 2D image-based generative models. Recent state-of-the-art methods typically require optimization time ranging from tens of minutes to several hours to edit a 3D scene using a single GPU. In this work, we propose that by incorporating correspondence regularization into diffusion models, the process of 3D editing can be significantly accelerated. This approach is inspired by the notion that the estimated samples during diffusion should be multiview-consistent during the diffusion generation process. By leveraging this multiview consistency, we can edit 3D content at a much faster speed. In most scenarios, our proposed technique brings a 10$\times$ speed-up compared to the baseline method and completes the editing of a 3D scene in 2 minutes with comparable quality.
Abstract:Recent advancements in subject-driven image generation have led to zero-shot generation, yet precise selection and focus on crucial subject representations remain challenging. Addressing this, we introduce the SSR-Encoder, a novel architecture designed for selectively capturing any subject from single or multiple reference images. It responds to various query modalities including text and masks, without necessitating test-time fine-tuning. The SSR-Encoder combines a Token-to-Patch Aligner that aligns query inputs with image patches and a Detail-Preserving Subject Encoder for extracting and preserving fine features of the subjects, thereby generating subject embeddings. These embeddings, used in conjunction with original text embeddings, condition the generation process. Characterized by its model generalizability and efficiency, the SSR-Encoder adapts to a range of custom models and control modules. Enhanced by the Embedding Consistency Regularization Loss for improved training, our extensive experiments demonstrate its effectiveness in versatile and high-quality image generation, indicating its broad applicability. Project page: https://ssr-encoder.github.io
Abstract:Low-light image enhancement is a crucial visual task, and many unsupervised methods tend to overlook the degradation of visible information in low-light scenes, which adversely affects the fusion of complementary information and hinders the generation of satisfactory results. To address this, our study introduces ``Enlighten-Your-Voice'', a multimodal enhancement framework that innovatively enriches user interaction through voice and textual commands. This approach does not merely signify a technical leap but also represents a paradigm shift in user engagement. Our model is equipped with a Dual Collaborative Attention Module (DCAM) that meticulously caters to distinct content and color discrepancies, thereby facilitating nuanced enhancements. Complementarily, we introduce a Semantic Feature Fusion (SFM) plug-and-play module that synergizes semantic context with low-light enhancement operations, sharpening the algorithm's efficacy. Crucially, ``Enlighten-Your-Voice'' showcases remarkable generalization in unsupervised zero-shot scenarios. The source code can be accessed from https://github.com/zhangbaijin/Enlighten-Your-Voice
Abstract:In the field of intelligent multimedia analysis, ultra-fine-grained visual categorization (Ultra-FGVC) plays a vital role in distinguishing intricate subcategories within broader categories. However, this task is inherently challenging due to the complex granularity of category subdivisions and the limited availability of data for each category. To address these challenges, this work proposes CSDNet, a pioneering framework that effectively explores contrastive learning and self-distillation to learn discriminative representations specifically designed for Ultra-FGVC tasks. CSDNet comprises three main modules: Subcategory-Specific Discrepancy Parsing (SSDP), Dynamic Discrepancy Learning (DDL), and Subcategory-Specific Discrepancy Transfer (SSDT), which collectively enhance the generalization of deep models across instance, feature, and logit prediction levels. To increase the diversity of training samples, the SSDP module introduces augmented samples from different viewpoints to spotlight subcategory-specific discrepancies. Simultaneously, the proposed DDL module stores historical intermediate features by a dynamic memory queue, which optimizes the feature learning space through iterative contrastive learning. Furthermore, the SSDT module is developed by a novel self-distillation paradigm at the logit prediction level of raw and augmented samples, which effectively distills more subcategory-specific discrepancies knowledge from the inherent structure of limited training data without requiring additional annotations. Experimental results demonstrate that CSDNet outperforms current state-of-the-art Ultra-FGVC methods, emphasizing its powerful efficacy and adaptability in addressing Ultra-FGVC tasks.
Abstract:Occluded person re-identification (re-ID) presents a challenging task due to occlusion perturbations. Although great efforts have been made to prevent the model from being disturbed by occlusion noise, most current solutions only capture information from a single image, disregarding the rich complementary information available in multiple images depicting the same pedestrian. In this paper, we propose a novel framework called Multi-view Information Integration and Propagation (MVI$^{2}$P). Specifically, realizing the potential of multi-view images in effectively characterizing the occluded target pedestrian, we integrate feature maps of which to create a comprehensive representation. During this process, to avoid introducing occlusion noise, we develop a CAMs-aware Localization module that selectively integrates information contributing to the identification. Additionally, considering the divergence in the discriminative nature of different images, we design a probability-aware Quantification module to emphatically integrate highly reliable information. Moreover, as multiple images with the same identity are not accessible in the testing stage, we devise an Information Propagation (IP) mechanism to distill knowledge from the comprehensive representation to that of a single occluded image. Extensive experiments and analyses have unequivocally demonstrated the effectiveness and superiority of the proposed MVI$^{2}$P. The code will be released at \url{https://github.com/nengdong96/MVIIP}.
Abstract:High Dynamic Range (HDR) images can be recovered from several Low Dynamic Range (LDR) images by existing Deep Neural Networks (DNNs) techniques. Despite the remarkable progress, DNN-based methods still generate ghosting artifacts when LDR images have saturation and large motion, which hinders potential applications in real-world scenarios. To address this challenge, we formulate the HDR deghosting problem as an image generation that leverages LDR features as the diffusion model's condition, consisting of the feature condition generator and the noise predictor. Feature condition generator employs attention and Domain Feature Alignment (DFA) layer to transform the intermediate features to avoid ghosting artifacts. With the learned features as conditions, the noise predictor leverages a stochastic iterative denoising process for diffusion models to generate an HDR image by steering the sampling process. Furthermore, to mitigate semantic confusion caused by the saturation problem of LDR images, we design a sliding window noise estimator to sample smooth noise in a patch-based manner. In addition, an image space loss is proposed to avoid the color distortion of the estimated HDR results. We empirically evaluate our model on benchmark datasets for HDR imaging. The results demonstrate that our approach achieves state-of-the-art performances and well generalization to real-world images.
Abstract:Learning phone types from phone instances has been a long-standing problem, while still being open. In this work, we revisit this problem in the context of self-supervised learning, and pose it as the problem of matching cluster centroids to phone embeddings. We study two key properties that enable matching, namely, whether cluster centroids of self-supervised representations reduce the variability of phone instances and respect the relationship among phones. We then use the matching result to produce pseudo-labels and introduce a new loss function for improving self-supervised representations. Our experiments show that the matching result captures the relationship among phones. Training the new loss function jointly with the regular self-supervised losses, such as APC and CPC, significantly improves the downstream phone classification.
Abstract:In this paper, a Segment Anything Model (SAM)-based pedestrian infrastructure segmentation workflow is designed and optimized, which is capable of efficiently processing multi-sourced geospatial data including LiDAR data and satellite imagery data. We used an expanded definition of pedestrian infrastructure inventory which goes beyond the traditional transportation elements to include street furniture objects often omitted from the traditional definition. Our contributions lie in producing the necessary knowledge to answer the following two questions. First, which data representation can facilitate zero-shot segmentation of infrastructure objects with SAM? Second, how well does the SAM-based method perform on segmenting pedestrian infrastructure objects? Our findings indicate that street view images generated from mobile LiDAR point cloud data, when paired along with satellite imagery data, can work efficiently with SAM to create a scalable pedestrian infrastructure inventory approach with immediate benefits to GIS professionals, city managers, transportation owners, and walkers, especially those with travel-limiting disabilities.
Abstract:Distributed quantum computing is a promising computational paradigm for performing computations that are beyond the reach of individual quantum devices. Privacy in distributed quantum computing is critical for maintaining confidentiality and protecting the data in the presence of untrusted computing nodes. In this work, we introduce novel blind quantum machine learning protocols based on the quantum bipartite correlator algorithm. Our protocols have reduced communication overhead while preserving the privacy of data from untrusted parties. We introduce robust algorithm-specific privacy-preserving mechanisms with low computational overhead that do not require complex cryptographic techniques. We then validate the effectiveness of the proposed protocols through complexity and privacy analysis. Our findings pave the way for advancements in distributed quantum computing, opening up new possibilities for privacy-aware machine learning applications in the era of quantum technologies.