Abstract:Generating high-quality camera-controllable videos from monocular input is a challenging task, particularly under extreme viewpoint. Existing methods often struggle with geometric inconsistencies and occlusion artifacts in boundaries, leading to degraded visual quality. In this paper, we introduce EX-4D, a novel framework that addresses these challenges through a Depth Watertight Mesh representation. The representation serves as a robust geometric prior by explicitly modeling both visible and occluded regions, ensuring geometric consistency in extreme camera pose. To overcome the lack of paired multi-view datasets, we propose a simulated masking strategy that generates effective training data only from monocular videos. Additionally, a lightweight LoRA-based video diffusion adapter is employed to synthesize high-quality, physically consistent, and temporally coherent videos. Extensive experiments demonstrate that EX-4D outperforms state-of-the-art methods in terms of physical consistency and extreme-view quality, enabling practical 4D video generation.
Abstract:Large Language Models (LLMs), despite their advancements, are fundamentally limited by their static parametric knowledge, hindering performance on tasks requiring open-domain up-to-date information. While enabling LLMs to interact with external knowledge environments is a promising solution, current efforts primarily address closed-end problems. Open-ended questions, which characterized by lacking a standard answer or providing non-unique and diverse answers, remain underexplored. To bridge this gap, we present O$^2$-Searcher, a novel search agent leveraging reinforcement learning to effectively tackle both open-ended and closed-ended questions in the open domain. O$^2$-Searcher leverages an efficient, locally simulated search environment for dynamic knowledge acquisition, effectively decoupling the external world knowledge from model's sophisticated reasoning processes. It employs a unified training mechanism with meticulously designed reward functions, enabling the agent to identify problem types and adapt different answer generation strategies. Furthermore, to evaluate performance on complex open-ended tasks, we construct O$^2$-QA, a high-quality benchmark featuring 300 manually curated, multi-domain open-ended questions with associated web page caches. Extensive experiments show that O$^2$-Searcher, using only a 3B model, significantly surpasses leading LLM agents on O$^2$-QA. It also achieves SOTA results on various closed-ended QA benchmarks against similarly-sized models, while performing on par with much larger ones.
Abstract:This paper reviews the NTIRE 2025 Efficient Burst HDR and Restoration Challenge, which aims to advance efficient multi-frame high dynamic range (HDR) and restoration techniques. The challenge is based on a novel RAW multi-frame fusion dataset, comprising nine noisy and misaligned RAW frames with various exposure levels per scene. Participants were tasked with developing solutions capable of effectively fusing these frames while adhering to strict efficiency constraints: fewer than 30 million model parameters and a computational budget under 4.0 trillion FLOPs. A total of 217 participants registered, with six teams finally submitting valid solutions. The top-performing approach achieved a PSNR of 43.22 dB, showcasing the potential of novel methods in this domain. This paper provides a comprehensive overview of the challenge, compares the proposed solutions, and serves as a valuable reference for researchers and practitioners in efficient burst HDR and restoration.
Abstract:The advent of Deep Neural Networks (DNNs) has driven remarkable progress in low-light image enhancement (LLIE), with diverse architectures (e.g., CNNs and Transformers) and color spaces (e.g., sRGB, HSV, HVI) yielding impressive results. Recent efforts have sought to leverage the complementary strengths of these paradigms, offering promising solutions to enhance performance across varying degradation scenarios. However, existing fusion strategies are hindered by challenges such as parameter explosion, optimization instability, and feature misalignment, limiting further improvements. To overcome these issues, we introduce FusionNet, a novel multi-model linear fusion framework that operates in parallel to effectively capture global and local features across diverse color spaces. By incorporating a linear fusion strategy underpinned by Hilbert space theoretical guarantees, FusionNet mitigates network collapse and reduces excessive training costs. Our method achieved 1st place in the CVPR2025 NTIRE Low Light Enhancement Challenge. Extensive experiments conducted on synthetic and real-world benchmark datasets demonstrate that the proposed method significantly outperforms state-of-the-art methods in terms of both quantitative and qualitative results, delivering robust enhancement under diverse low-light conditions.
Abstract:Scene-level 3D generation represents a critical frontier in multimedia and computer graphics, yet existing approaches either suffer from limited object categories or lack editing flexibility for interactive applications. In this paper, we present HiScene, a novel hierarchical framework that bridges the gap between 2D image generation and 3D object generation and delivers high-fidelity scenes with compositional identities and aesthetic scene content. Our key insight is treating scenes as hierarchical "objects" under isometric views, where a room functions as a complex object that can be further decomposed into manipulatable items. This hierarchical approach enables us to generate 3D content that aligns with 2D representations while maintaining compositional structure. To ensure completeness and spatial alignment of each decomposed instance, we develop a video-diffusion-based amodal completion technique that effectively handles occlusions and shadows between objects, and introduce shape prior injection to ensure spatial coherence within the scene. Experimental results demonstrate that our method produces more natural object arrangements and complete object instances suitable for interactive applications, while maintaining physical plausibility and alignment with user inputs.
Abstract:Given the growing environmental challenges, accurate monitoring and prediction of changes in water bodies are essential for sustainable management and conservation. The Continuous Monitoring of Land Disturbance (COLD) algorithm provides a valuable tool for real-time analysis of land changes, such as deforestation, urban expansion, agricultural activities, and natural disasters. This capability enables timely interventions and more informed decision-making. This paper assesses the effectiveness of the algorithm to estimate water bodies and track pixel-level water trends over time. Our findings indicate that COLD-derived data can reliably estimate estimate water frequency during stable periods and delineate water bodies. Furthermore, it enables the evaluation of trends in water areas after disturbances, allowing for the determination of whether water frequency increases, decreases, or remains constant.
Abstract:Recovering High Dynamic Range (HDR) images from multiple Low Dynamic Range (LDR) images becomes challenging when the LDR images exhibit noticeable degradation and missing content. Leveraging scene-specific semantic priors offers a promising solution for restoring heavily degraded regions. However, these priors are typically extracted from sRGB Standard Dynamic Range (SDR) images, the domain/format gap poses a significant challenge when applying it to HDR imaging. To address this issue, we propose a general framework that transfers semantic knowledge derived from SDR domain via self-distillation to boost existing HDR reconstruction. Specifically, the proposed framework first introduces the Semantic Priors Guided Reconstruction Model (SPGRM), which leverages SDR image semantic knowledge to address ill-posed problems in the initial HDR reconstruction results. Subsequently, we leverage a self-distillation mechanism that constrains the color and content information with semantic knowledge, aligning the external outputs between the baseline and SPGRM. Furthermore, to transfer the semantic knowledge of the internal features, we utilize a semantic knowledge alignment module (SKAM) to fill the missing semantic contents with the complementary masks. Extensive experiments demonstrate that our method can significantly improve the HDR imaging quality of existing methods.
Abstract:Scene-aware Adaptive Compressive Sensing (ACS) has attracted significant interest due to its promising capability for efficient and high-fidelity acquisition of scene images. ACS typically prescribes adaptive sampling allocation (ASA) based on previous samples in the absence of ground truth. However, when confronting unknown scenes, existing ACS methods often lack accurate judgment and robust feedback mechanisms for ASA, thus limiting the high-fidelity sensing of the scene. In this paper, we introduce a Sampling Innovation-Based ACS (SIB-ACS) method that can effectively identify and allocate sampling to challenging image reconstruction areas, culminating in high-fidelity image reconstruction. An innovation criterion is proposed to judge ASA by predicting the decrease in image reconstruction error attributable to sampling increments, thereby directing more samples towards regions where the reconstruction error diminishes significantly. A sampling innovation-guided multi-stage adaptive sampling (AS) framework is proposed, which iteratively refines the ASA through a multi-stage feedback process. For image reconstruction, we propose a Principal Component Compressed Domain Network (PCCD-Net), which efficiently and faithfully reconstructs images under AS scenarios. Extensive experiments demonstrate that the proposed SIB-ACS method significantly outperforms the state-of-the-art methods in terms of image reconstruction fidelity and visual effects. Codes are available at https://github.com/giant-pandada/SIB-ACS_CVPR2025.
Abstract:While autonomous driving technology has made remarkable strides, data-driven approaches still struggle with complex scenarios due to their limited reasoning capabilities. Meanwhile, knowledge-driven autonomous driving systems have evolved considerably with the popularization of visual language models. In this paper, we propose LeapVAD, a novel method based on cognitive perception and dual-process thinking. Our approach implements a human-attentional mechanism to identify and focus on critical traffic elements that influence driving decisions. By characterizing these objects through comprehensive attributes - including appearance, motion patterns, and associated risks - LeapVAD achieves more effective environmental representation and streamlines the decision-making process. Furthermore, LeapVAD incorporates an innovative dual-process decision-making module miming the human-driving learning process. The system consists of an Analytic Process (System-II) that accumulates driving experience through logical reasoning and a Heuristic Process (System-I) that refines this knowledge via fine-tuning and few-shot learning. LeapVAD also includes reflective mechanisms and a growing memory bank, enabling it to learn from past mistakes and continuously improve its performance in a closed-loop environment. To enhance efficiency, we develop a scene encoder network that generates compact scene representations for rapid retrieval of relevant driving experiences. Extensive evaluations conducted on two leading autonomous driving simulators, CARLA and DriveArena, demonstrate that LeapVAD achieves superior performance compared to camera-only approaches despite limited training data. Comprehensive ablation studies further emphasize its effectiveness in continuous learning and domain adaptation. Project page: https://pjlab-adg.github.io/LeapVAD/.
Abstract:We propose PRM, a novel photometric stereo based large reconstruction model to reconstruct high-quality meshes with fine-grained local details. Unlike previous large reconstruction models that prepare images under fixed and simple lighting as both input and supervision, PRM renders photometric stereo images by varying materials and lighting for the purposes, which not only improves the precise local details by providing rich photometric cues but also increases the model robustness to variations in the appearance of input images. To offer enhanced flexibility of images rendering, we incorporate a real-time physically-based rendering (PBR) method and mesh rasterization for online images rendering. Moreover, in employing an explicit mesh as our 3D representation, PRM ensures the application of differentiable PBR, which supports the utilization of multiple photometric supervisions and better models the specular color for high-quality geometry optimization. Our PRM leverages photometric stereo images to achieve high-quality reconstructions with fine-grained local details, even amidst sophisticated image appearances. Extensive experiments demonstrate that PRM significantly outperforms other models.