Terminus Group, Beijing, China
Abstract:Cross-domain few-shot medical image segmentation (CD-FSMIS) offers a promising and data-efficient solution for medical applications where annotations are severely scarce and multimodal analysis is required. However, existing methods typically filter out domain-specific information to improve generalization, which inadvertently limits cross-domain performance and degrades source-domain accuracy. To address this, we present Contrastive Graph Modeling (C-Graph), a framework that leverages the structural consistency of medical images as a reliable domain-transferable prior. We represent image features as graphs, with pixels as nodes and semantic affinities as edges. A Structural Prior Graph (SPG) layer is proposed to capture and transfer target-category node dependencies and enable global structure modeling through explicit node interactions. Building upon SPG layers, we introduce a Subgraph Matching Decoding (SMD) mechanism that exploits semantic relations among nodes to guide prediction. Furthermore, we design a Confusion-minimizing Node Contrast (CNC) loss to mitigate node ambiguity and subgraph heterogeneity by contrastively enhancing node discriminability in the graph space. Our method significantly outperforms prior CD-FSMIS approaches across multiple cross-domain benchmarks, achieving state-of-the-art performance while simultaneously preserving strong segmentation accuracy on the source domain.
Abstract:Zero-shot Learning (ZSL) aims to enable image classifiers to recognize images from unseen classes that were not included during training. Unlike traditional supervised classification, ZSL typically relies on learning a mapping from visual features to predefined, human-understandable class concepts. While ZSL models promise to improve generalization and interpretability, their robustness under systematic input perturbations remain unclear. In this study, we present an empirical analysis about the robustness of existing ZSL methods at both classlevel and concept-level. Specifically, we successfully disrupted their class prediction by the well-known non-target class attack (clsA). However, in the Generalized Zero-shot Learning (GZSL) setting, we observe that the success of clsA is only at the original best-calibrated point. After the attack, the optimal bestcalibration point shifts, and ZSL models maintain relatively strong performance at other calibration points, indicating that clsA results in a spurious attack success in the GZSL. To address this, we propose the Class-Bias Enhanced Attack (CBEA), which completely eliminates GZSL accuracy across all calibrated points by enhancing the gap between seen and unseen class probabilities.Next, at concept-level attack, we introduce two novel attack modes: Class-Preserving Concept Attack (CPconA) and NonClass-Preserving Concept Attack (NCPconA). Our extensive experiments evaluate three typical ZSL models across various architectures from the past three years and reveal that ZSL models are vulnerable not only to the traditional class attack but also to concept-based attacks. These attacks allow malicious actors to easily manipulate class predictions by erasing or introducing concepts. Our findings highlight a significant performance gap between existing approaches, emphasizing the need for improved adversarial robustness in current ZSL models.
Abstract:Vision-language models (VLMs) such as CLIP exhibit strong zero-shot generalization but remain sensitive to domain shifts at test time. Test-time prompt tuning (TPT) mitigates this issue by adapting prompts with fixed augmentations, which may falter in more challenging settings. In this work, we propose Meta Test-Time Prompt Tuning (MetaTPT), a meta-learning framework that learns a self-supervised auxiliary task to guide test-time prompt tuning. The auxiliary task dynamically learns parameterized augmentations for each sample, enabling more expressive transformations that capture essential features in target domains. MetaTPT adopts a dual-loop optimization paradigm: an inner loop learns a self-supervised task that generates informative views, while the outer loop performs prompt tuning by enforcing consistency across these views. By coupling augmentation learning with prompt tuning, MetaTPT improves test-time adaptation under domain shifts. Extensive experiments demonstrate that MetaTPT achieves state-of-the-art performance on domain generalization and cross-dataset benchmarks.
Abstract:Discrete diffusion-based multimodal large language models (dMLLMs) have emerged as a promising alternative to autoregressive MLLMs thanks to their advantages in parallel decoding and bidirectional context modeling, but most existing dMLLMs incur significant computational overhead during inference due to the full-sequence attention computation in each denoising step. Pioneer studies attempt to resolve this issue from a modality-agnostic perspective via key-value cache optimization or efficient sampling but most of them overlook modality-specific visual token redundancy. In this work, we conduct a comprehensive study on how visual token redundancy evolves with different dMLLM architectures and tasks and how visual token pruning affects dMLLM responses and efficiency. Specifically, our study reveals that visual redundancy emerges only in from-scratch dMLLMs while handling long-answer tasks. In addition, we validate that visual token pruning introduces non-negligible information loss in dMLLMs and only from-scratch dMLLMs can recover the lost information progressively during late denoising steps. Furthermore, our study shows that layer-skipping is promising for accelerating AR-to-diffusion dMLLMs, whereas progressive or late-step pruning is more effective for from-scratch dMLLMs. Overall, this work offers a new perspective on efficiency optimization for dMLLMs, greatly advancing their applicability across various multimodal understanding tasks.
Abstract:Multimodal large language models~(MLLMs) have demonstrated promising spatial understanding capabilities, such as referencing and grounding object descriptions. Despite their successes, MLLMs still fall short in fine-grained spatial perception abilities, such as generating detailed region descriptions or accurately localizing objects. Additionally, they often fail to respond to the user's requirements for desired fine-grained spatial understanding. This issue might arise because existing approaches primarily focus on tuning MLLMs to model pre-annotated instruction data to inject spatial knowledge, without direct supervision of MLLMs' actual responses. We address this issue by SPR, a Spatial Preference Rewarding~(SPR) approach that enhances MLLMs' spatial capabilities by rewarding MLLMs' detailed responses with precise object localization over vague or inaccurate responses. With randomly selected image regions and region descriptions from MLLMs, SPR introduces semantic and localization scores to comprehensively evaluate the text quality and localization quality in MLLM-generated descriptions. We also refine the MLLM descriptions with better localization accuracy and pair the best-scored refinement with the initial descriptions of the lowest score for direct preference optimization, thereby enhancing fine-grained alignment with visual input. Extensive experiments over standard referring and grounding benchmarks show that SPR improves MLLM spatial understanding capabilities effectively with minimal overhead in training. Data and code will be released at https://github.com/hanqiu-hq/SPR
Abstract:Aesthetic Image Captioning (AIC) aims to generate textual descriptions of image aesthetics, becoming a key research direction in the field of computational aesthetics. In recent years, pretrained Multimodal Large Language Models (MLLMs) have advanced rapidly, leading to a significant increase in image aesthetics research that integrates both visual and textual modalities. However, most existing studies on image aesthetics primarily focus on predicting aesthetic ratings and have shown limited application in AIC. Existing AIC works leveraging MLLMs predominantly rely on fine-tuning methods without specifically adapting MLLMs to focus on target aesthetic content. To address this limitation, we propose the Aesthetic Saliency Enhanced Multimodal Large Language Model (ASE-MLLM), an end-to-end framework that explicitly incorporates aesthetic saliency into MLLMs. Within this framework, we introduce the Image Aesthetic Saliency Module (IASM), which efficiently and effectively extracts aesthetic saliency features from images. Additionally, we design IAS-ViT as the image encoder for MLLMs, this module fuses aesthetic saliency features with original image features via a cross-attention mechanism. To the best of our knowledge, ASE-MLLM is the first framework to integrate image aesthetic saliency into MLLMs specifically for AIC tasks. Extensive experiments demonstrated that our approach significantly outperformed traditional methods and generic MLLMs on current mainstream AIC benchmarks, achieving state-of-the-art (SOTA) performance.




Abstract:We propose a novel spatial-temporal graph Mamba (STG-Mamba) for the music-guided dance video synthesis task, i.e., to translate the input music to a dance video. STG-Mamba consists of two translation mappings: music-to-skeleton translation and skeleton-to-video translation. In the music-to-skeleton translation, we introduce a novel spatial-temporal graph Mamba (STGM) block to effectively construct skeleton sequences from the input music, capturing dependencies between joints in both the spatial and temporal dimensions. For the skeleton-to-video translation, we propose a novel self-supervised regularization network to translate the generated skeletons, along with a conditional image, into a dance video. Lastly, we collect a new skeleton-to-video translation dataset from the Internet, containing 54,944 video clips. Extensive experiments demonstrate that STG-Mamba achieves significantly better results than existing methods.
Abstract:Text-to-Image (T2I) has been prevalent in recent years, with most common condition tasks having been optimized nicely. Besides, counterfactual Text-to-Image is obstructing us from a more versatile AIGC experience. For those scenes that are impossible to happen in real world and anti-physics, we should spare no efforts in increasing the factual feel, which means synthesizing images that people think very likely to be happening, and concept alignment, which means all the required objects should be in the same frame. In this paper, we focus on concept alignment. As controllable T2I models have achieved satisfactory performance for real applications, we utilize this technology to replace the objects in a synthesized image in latent space step-by-step to change the image from a common scene to a counterfactual scene to meet the prompt. We propose a strategy to instruct this replacing process, which is called as Explicit Logical Narrative Prompt (ELNP), by using the newly SoTA language model DeepSeek to generate the instructions. Furthermore, to evaluate models' performance in counterfactual T2I, we design a metric to calculate how many required concepts in the prompt can be covered averagely in the synthesized images. The extensive experiments and qualitative comparisons demonstrate that our strategy can boost the concept alignment in counterfactual T2I.
Abstract:3D activity reasoning and planning has attracted increasing attention in human-robot interaction and embodied AI thanks to the recent advance in multimodal learning. However, most existing works share two constraints: 1) heavy reliance on explicit instructions with little reasoning on implicit user intention; 2) negligence of inter-step route planning on robot moves. To bridge the gaps, we propose 3D activity reasoning and planning, a novel 3D task that reasons the intended activities from implicit instructions and decomposes them into steps with inter-step routes and planning under the guidance of fine-grained 3D object shapes and locations from scene segmentation. We tackle the new 3D task from two perspectives. First, we construct ReasonPlan3D, a large-scale benchmark that covers diverse 3D scenes with rich implicit instructions and detailed annotations for multi-step task planning, inter-step route planning, and fine-grained segmentation. Second, we design a novel framework that introduces progressive plan generation with contextual consistency across multiple steps, as well as a scene graph that is updated dynamically for capturing critical objects and their spatial relations. Extensive experiments demonstrate the effectiveness of our benchmark and framework in reasoning activities from implicit human instructions, producing accurate stepwise task plans, and seamlessly integrating route planning for multi-step moves. The dataset and code will be released.
Abstract:A high-performance image compression algorithm is crucial for real-time information transmission across numerous fields. Despite rapid progress in image compression, computational inefficiency and poor redundancy modeling still pose significant bottlenecks, limiting practical applications. Inspired by the effectiveness of state space models (SSMs) in capturing long-range dependencies, we leverage SSMs to address computational inefficiency in existing methods and improve image compression from multiple perspectives. In this paper, we integrate the advantages of SSMs for better efficiency-performance trade-off and propose an enhanced image compression approach through refined context modeling, which we term MambaIC. Specifically, we explore context modeling to adaptively refine the representation of hidden states. Additionally, we introduce window-based local attention into channel-spatial entropy modeling to reduce potential spatial redundancy during compression, thereby increasing efficiency. Comprehensive qualitative and quantitative results validate the effectiveness and efficiency of our approach, particularly for high-resolution image compression. Code is released at https://github.com/AuroraZengfh/MambaIC.