Abstract:Visual Question-Answering (VQA) is a challenging multimodal task that requires integrating visual and textual information to generate accurate responses. While multimodal Retrieval-Augmented Generation (mRAG) has shown promise in enhancing VQA systems by providing more evidence on both image and text sides, the default procedure that addresses VQA queries, especially the knowledge-intensive ones, often relies on multi-stage pipelines of mRAG with inherent dependencies. To mitigate the inefficiency limitations while maintaining VQA task performance, this paper proposes a method that trains a multimodal planning agent, dynamically decomposing the mRAG pipeline to solve the VQA task. Our method optimizes the trade-off between efficiency and effectiveness by training the agent to intelligently determine the necessity of each mRAG step. In our experiments, the agent can help reduce redundant computations, cutting search time by over 60\% compared to existing methods and decreasing costly tool calls. Meanwhile, experiments demonstrate that our method outperforms all baselines, including a Deep Research agent and a carefully designed prompt-based method, on average over six various datasets. Code will be released.
Abstract:Large language model (LLM)-based agents have been successfully deployed in many tool-augmented settings, but their scalability is fundamentally constrained by context length. Existing context-folding methods mitigate this issue by summarizing past interactions, yet they are typically designed for single-query or single-intent scenarios. In more realistic user-centric dialogues, we identify two major failure modes: (i) they irreversibly discard fine-grained constraints and intermediate facts that are crucial for later decisions, and (ii) their summaries fail to track evolving user intent, leading to omissions and erroneous actions. To address these limitations, we propose U-Fold, a dynamic context-folding framework tailored to user-centric tasks. U-Fold retains the full user--agent dialogue and tool-call history but, at each turn, uses two core components to produce an intent-aware, evolving dialogue summary and a compact, task-relevant tool log. Extensive experiments on $τ$-bench, $τ^2$-bench, VitaBench, and harder context-inflated settings show that U-Fold consistently outperforms ReAct (achieving a 71.4% win rate in long-context settings) and prior folding baselines (with improvements of up to 27.0%), particularly on long, noisy, multi-turn tasks. Our study demonstrates that U-Fold is a promising step toward transferring context-management techniques from single-query benchmarks to realistic user-centric applications.
Abstract:Composed Image Retrieval (CIR) is a pivotal and complex task in multimodal understanding. Current CIR benchmarks typically feature limited query categories and fail to capture the diverse requirements of real-world scenarios. To bridge this evaluation gap, we leverage image editing to achieve precise control over modification types and content, enabling a pipeline for synthesizing queries across a broad spectrum of categories. Using this pipeline, we construct EDIR, a novel fine-grained CIR benchmark. EDIR encompasses 5,000 high-quality queries structured across five main categories and fifteen subcategories. Our comprehensive evaluation of 13 multimodal embedding models reveals a significant capability gap; even state-of-the-art models (e.g., RzenEmbed and GME) struggle to perform consistently across all subcategories, highlighting the rigorous nature of our benchmark. Through comparative analysis, we further uncover inherent limitations in existing benchmarks, such as modality biases and insufficient categorical coverage. Furthermore, an in-domain training experiment demonstrates the feasibility of our benchmark. This experiment clarifies the task challenges by distinguishing between categories that are solvable with targeted data and those that expose intrinsic limitations of current model architectures.
Abstract:While Reinforcement Learning (RL) has advanced LLM reasoning, applying it to long-context scenarios is hindered by sparsity of outcome rewards. This limitation fails to penalize ungrounded "lucky guesses," leaving the critical process of needle-in-a-haystack evidence retrieval largely unsupervised. To address this, we propose EAPO (Evidence-Augmented Policy Optimization). We first establish the Evidence-Augmented Reasoning paradigm, validating via Tree-Structured Evidence Sampling that precise evidence extraction is the decisive bottleneck for long-context reasoning. Guided by this insight, EAPO introduces a specialized RL algorithm where a reward model computes a Group-Relative Evidence Reward, providing dense process supervision to explicitly improve evidence quality. To sustain accurate supervision throughout training, we further incorporate an Adaptive Reward-Policy Co-Evolution mechanism. This mechanism iteratively refines the reward model using outcome-consistent rollouts, sharpening its discriminative capability to ensure precise process guidance. Comprehensive evaluations across eight benchmarks demonstrate that EAPO significantly enhances long-context reasoning performance compared to SOTA baselines.
Abstract:Reinforcement learning has substantially improved the performance of LLM agents on tasks with verifiable outcomes, but it still struggles on open-ended agent tasks with vast solution spaces (e.g., complex travel planning). Due to the absence of objective ground-truth for these tasks, current RL algorithms largely rely on reward models that assign scalar scores to individual responses. We contend that such pointwise scoring suffers from an inherent discrimination collapse: the reward model struggles to distinguish subtle advantages among different trajectories, resulting in scores within a group being compressed into a narrow range. Consequently, the effective reward signal becomes dominated by noise from the reward model, leading to optimization stagnation. To address this, we propose ArenaRL, a reinforcement learning paradigm that shifts from pointwise scalar scoring to intra-group relative ranking. ArenaRL introduces a process-aware pairwise evaluation mechanism, employing multi-level rubrics to assign fine-grained relative scores to trajectories. Additionally, we construct an intra-group adversarial arena and devise a tournament-based ranking scheme to obtain stable advantage signals. Empirical results confirm that the built seeded single-elimination scheme achieves nearly equivalent advantage estimation accuracy to full pairwise comparisons with O(N^2) complexity, while operating with only O(N) complexity, striking an optimal balance between efficiency and precision. Furthermore, to address the lack of full-cycle benchmarks for open-ended agents, we build Open-Travel and Open-DeepResearch, two high-quality benchmarks featuring a comprehensive pipeline covering SFT, RL training, and multi-dimensional evaluation. Extensive experiments show that ArenaRL substantially outperforms standard RL baselines, enabling LLM agents to generate more robust solutions for complex real-world tasks.
Abstract:In this report, we introduce the Qwen3-VL-Embedding and Qwen3-VL-Reranker model series, the latest extensions of the Qwen family built on the Qwen3-VL foundation model. Together, they provide an end-to-end pipeline for high-precision multimodal search by mapping diverse modalities, including text, images, document images, and video, into a unified representation space. The Qwen3-VL-Embedding model employs a multi-stage training paradigm, progressing from large-scale contrastive pre-training to reranking model distillation, to generate semantically rich high-dimensional vectors. It supports Matryoshka Representation Learning, enabling flexible embedding dimensions, and handles inputs up to 32k tokens. Complementing this, Qwen3-VL-Reranker performs fine-grained relevance estimation for query-document pairs using a cross-encoder architecture with cross-attention mechanisms. Both model series inherit the multilingual capabilities of Qwen3-VL, supporting more than 30 languages, and are released in $\textbf{2B}$ and $\textbf{8B}$ parameter sizes to accommodate diverse deployment requirements. Empirical evaluations demonstrate that the Qwen3-VL-Embedding series achieves state-of-the-art results across diverse multimodal embedding evaluation benchmarks. Specifically, Qwen3-VL-Embedding-8B attains an overall score of $\textbf{77.8}$ on MMEB-V2, ranking first among all models (as of January 8, 2025). This report presents the architecture, training methodology, and practical capabilities of the series, demonstrating their effectiveness on various multimodal retrieval tasks, including image-text retrieval, visual question answering, and video-text matching.
Abstract:Large Language Model(LLM)-based agents have shown strong capabilities in web information seeking, with reinforcement learning (RL) becoming a key optimization paradigm. However, planning remains a bottleneck, as existing methods struggle with long-horizon strategies. Our analysis reveals a critical phenomenon, plan anchor, where the first reasoning step disproportionately impacts downstream behavior in long-horizon web reasoning tasks. Current RL algorithms, fail to account for this by uniformly distributing rewards across the trajectory. To address this, we propose Anchor-GRPO, a two-stage RL framework that decouples planning and execution. In Stage 1, the agent optimizes its first-step planning using fine-grained rubrics derived from self-play experiences and human calibration. In Stage 2, execution is aligned with the initial plan through sparse rewards, ensuring stable and efficient tool usage. We evaluate Anchor-GRPO on four benchmarks: BrowseComp, BrowseComp-Zh, GAIA, and XBench-DeepSearch. Across models from 3B to 30B, Anchor-GRPO outperforms baseline GRPO and First-step GRPO, improving task success and tool efficiency. Notably, WebAnchor-30B achieves 46.0% pass@1 on BrowseComp and 76.4% on GAIA. Anchor-GRPO also demonstrates strong scalability, getting higher accuracy as model size and context length increase.
Abstract:Information-seeking (IS) agents have achieved strong performance across a range of wide and deep search tasks, yet their tool use remains largely restricted to API-level snippet retrieval and URL-based page fetching, limiting access to the richer information available through real browsing. While full browser interaction could unlock deeper capabilities, its fine-grained control and verbose page content returns introduce substantial complexity for ReAct-style function-calling agents. To bridge this gap, we propose Nested Browser-Use Learning (NestBrowse), which introduces a minimal and complete browser-action framework that decouples interaction control from page exploration through a nested structure. This design simplifies agentic reasoning while enabling effective deep-web information acquisition. Empirical results on challenging deep IS benchmarks demonstrate that NestBrowse offers clear benefits in practice. Further in-depth analyses underscore its efficiency and flexibility.
Abstract:Conducting reinforcement learning (RL) in simulated environments offers a cost-effective and highly scalable way to enhance language-based agents. However, previous work has been limited to semi-automated environment synthesis or tasks lacking sufficient difficulty, offering little breadth or depth. In addition, the instability of simulated users integrated into these environments, along with the heterogeneity across simulated environments, poses further challenges for agentic RL. In this work, we propose: (1) a unified pipeline for automated and scalable synthesis of simulated environments associated with high-difficulty but easily verifiable tasks; and (2) an environment level RL algorithm that not only effectively mitigates user instability but also performs advantage estimation at the environment level, thereby improving training efficiency and stability. Comprehensive evaluations on agentic benchmarks, including tau-bench, tau2-Bench, and VitaBench, validate the effectiveness of our proposed method. Further in-depth analyses underscore its out-of-domain generalization.




Abstract:Foundation agents have rapidly advanced in their ability to reason and interact with real environments, making the evaluation of their core capabilities increasingly important. While many benchmarks have been developed to assess agent performance, most concentrate on academic settings or artificially designed scenarios while overlooking the challenges that arise in real applications. To address this issue, we focus on a highly practical real-world setting, the e-commerce domain, which involves a large volume of diverse user interactions, dynamic market conditions, and tasks directly tied to real decision-making processes. To this end, we introduce EcomBench, a holistic E-commerce Benchmark designed to evaluate agent performance in realistic e-commerce environments. EcomBench is built from genuine user demands embedded in leading global e-commerce ecosystems and is carefully curated and annotated through human experts to ensure clarity, accuracy, and domain relevance. It covers multiple task categories within e-commerce scenarios and defines three difficulty levels that evaluate agents on key capabilities such as deep information retrieval, multi-step reasoning, and cross-source knowledge integration. By grounding evaluation in real e-commerce contexts, EcomBench provides a rigorous and dynamic testbed for measuring the practical capabilities of agents in modern e-commerce.