Abstract:Recent advancements in large-scale position-reconfigurable antennas have opened up new dimensions to effectively utilize the spatial degrees of freedom (DoFs) of wireless channels. However, the deployment of existing antenna placement schemes is primarily hindered by their limited scalability and frequently overlooked near-field effects in large-scale antenna systems. In this paper, we propose a novel antenna placement approach tailored for near-field massive multiple-input multiple-output systems, which effectively exploits the spatial DoFs to enhance spectral efficiency. For that purpose, we first reformulate the antenna placement problem in the angular domain, resulting in a weighted Fekete problem. We then derive the optimality condition and reveal that the {optimal} antenna placement is in principle an electrostatic equilibrium problem. To further reduce the computational complexity of numerical optimization, we propose an ordinary differential equation (ODE)-based framework to efficiently solve the equilibrium problem. In particular, the optimal antenna positions are characterized by the roots of the polynomial solutions to specific ODEs in the normalized angular domain. By simply adopting a two-step eigenvalue decomposition (EVD) approach, the optimal antenna positions can be efficiently obtained. Furthermore, we perform an asymptotic analysis when the antenna size tends to infinity, which yields a closed-form solution. Simulation results demonstrate that the proposed scheme efficiently harnesses the spatial DoFs of near-field channels with prominent gains in spectral efficiency and maintains robustness against system parameter mismatches. In addition, the derived asymptotic closed-form {solution} closely approaches the theoretical optimum across a wide range of practical scenarios.
Abstract:Integrated sensing and communications (ISAC) is a disruptive technology enabling future sixth-generation (6G) networks. This paper investigates target detection in a bistatic ISAC system, in which the base station (BS) transmits superimposed ISAC signals comprising both Gaussian information-bearing and deterministic sensing components to simultaneously provide communication and sensing functionalities. First, we develop a Neyman-Pearson (NP)-based detector that effectively utilizes both the deterministic sensing and random communication signals. Closed-form analysis reveals that both signal components contribute to improving the overall detection performance. Subsequently, we optimize the BS transmit beamforming to maximize the detection probability, subject to a minimum signal-to-interference-plus-noise ratio (SINR) constraint for the communication user (CU) and a total transmit power budget at the BS. The resulting non-convex beamforming optimization problem is addressed via semi-definite relaxation (SDR) and successive convex approximation (SCA) techniques. Simulation results demonstrate the superiority of the proposed NP-based detector, which leverages both types of signals, over benchmark schemes that treat information signals as interference. They also reveal that a higher communication-rate threshold directs more transmit power to Gaussian information-bearing signals, thereby diminishing deterministic-signal power and weakening detection performance.
Abstract:This paper proposes a novel structure-aware matrix completion framework assisted by radial basis function (RBF) interpolation for near-field radio map construction in extremely large multiple-input multiple-output (XL-MIMO) systems. Unlike the far-field scenario, near-field wavefronts exhibit strong dependencies on both angle and distance due to spherical wave propagation, leading to complicated variations in received signal strength (RSS). To effectively capture the intricate spatial variations structure inherent in near-field environments, a regularized RBF interpolation method is developed to enhance radio map reconstruction accuracy. Leveraging theoretical insights from interpolation error analysis of RBF, an inverse μ-law-inspired nonuniform sampling strategy is introduced to allocate measurements adaptively, emphasizing regions with rapid RSS variations near the transmitter. To further exploit the global low-rank structure in the near-field radio map, we integrate RBF interpolation with nuclear norm minimization (NNM)-based matrix completion. A robust Huberized leave-one-out cross-validation (LOOCV) scheme is then proposed for adaptive selection of the tolerance parameter, facilitating optimal fusion between RBF interpolation and matrix completion. The integration of local variation structure modeling via RBF interpolation and global low-rank structure exploitation via matrix completion yields a structure-aware framework that substantially improves the accuracy of near-field radio map reconstruction. Extensive simulations demonstrate that the proposed approach achieves over 10% improvement in normalized mean squared error (NMSE) compared to standard interpolation and matrix completion methods under varying sampling densities and shadowing conditions.
Abstract:The employment of unmanned aerial vehicles (UAVs) in the lowaltitude economy necessitates precise and real-time radio maps for reliable communication and safe navigation. However, constructing such maps is hindered by the infeasibility of exhaustive measurements due to UAVs' limited flight endurance. To address this, we propose a novel active learning framework for low-altitude radio map construction based on limited measurements. First, a Plug-and-Play (PnP)-refined flow matching algorithm is introduced, which leverages flow matching as a powerful generative prior within a PnP scheme to reconstruct high-fidelity radio maps. Second, the generative nature of flow matching is exploited to quantify uncertainty by generating an ensemble of radio maps and computing the location-wise variance. The resulting uncertainty map guides a multi-objective candidate selection and then a trajectory is planned via utility-aware path search (UAPS), directing the UAV to the most informative locations while taking travel costs into account. Simulation results demonstrate that our method significantly outperforms the baselines, achieving more than a 70% reduction in normalized mean squared error (NMSE).
Abstract:In this paper, we investigate a bistatic integrated sensing and communications (ISAC) system, consisting of a multi-antenna base station (BS), a multi-antenna sensing receiver, a single-antenna communication user (CU), and a point target to be sensed. Specifically, the BS transmits a superposition of Gaussian information and deterministic sensing signals. The BS aims to deliver information symbols to the CU, while the sensing receiver aims to estimate the target's direction-of-arrival (DoA) with respect to the sensing receiver by processing the echo signals. For the sensing receiver, we assume that only the sequences of the deterministic sensing signals and the covariance matrix of the information signals are perfectly known, whereas the specific realizations of the information signals remain unavailable. Under this setup, we first derive the corresponding Cram\'er-Rao bounds (CRBs) for DoA estimation and propose practical estimators to accurately estimate the target's DoA. Subsequently, we formulate the transmit beamforming design as an optimization problem aiming to minimize the CRB, subject to a minimum signal-to-interference-plus-noise ratio (SINR) requirement at the CU and a maximum transmit power constraint at the BS. When the BS employs only Gaussian information signals, the resulting beamforming optimization problem is convex, enabling the derivation of an optimal solution. In contrast, when both Gaussian information and deterministic sensing signals are transmitted, the resulting problem is non-convex and a locally optimal solution is acquired by exploiting successive convex approximation (SCA). Finally, numerical results demonstrate that employing Gaussian information signals leads to a notable performance degradation for target sensing and the proposed transmit beamforming design achieves a superior ISAC performance boundary compared with various benchmark schemes.




Abstract:Pinching-antenna systems (PASS) have been recently proposed to improve the performance of wireless networks by reconfiguring both the large-scale and small-scale channel conditions. However, existing studies ignore the physical constraints of antenna placement and assume fixed antenna radiation power. To fill this research gap, this paper investigates the design of PASS taking into account the motion power consumption of pinching-antennas (PAs) and the impact of adjustable antenna radiation power. To that end, we minimize the average power consumption for a given quality-of-service (QoS) requirement, by jointly optimizing the antenna positions, antenna radiation power ratios, and transmit beamforming. To the best of the authors' knowledge, this is the first work to consider radiation power optimization in PASS, which provides an additional degree of freedom (DoF) for system design. The cases with both continuous and discrete antenna placement are considered, where the main challenge lies in the fact that the antenna positions affect both the magnitude and phase of the channel coefficients of PASS, making system optimization very challenging. To tackle the resulting unique obstacles, an alternating direction method of multipliers (ADMM)-based framework is proposed to solve the problem for continuous antenna movement, while its discrete counterpart is formulated as a mixed integer nonlinear programming (MINLP) problem and solved by the block coordinate descent (BCD) method. Simulation results validate the performance enhancement achieved by incorporating PA movement power assumption and adjustable radiation power into PASS design, while also demonstrating the efficiency of the proposed optimization framework. The benefits of PASS over conventional multiple-input multiple-output (MIMO) systems in mitigating the large-scale path loss and inter-user interference is also revealed.
Abstract:This paper studies energy-efficient hybrid beamforming architectures and its algorithm design in millimeter-wave communication systems, aiming to address the challenges faced by existing hybrid beamforming due to low hardware flexibility and high power consumption. To solve the problems of existing hybrid beamforming, a novel energy-efficient hybrid beamforming architecture is proposed, where radio-frequency (RF) switch networks are introduced at the front and rear ends of the phase shifter network, enabling dynamic connections between the RF chains and the phase shifter array as well as the antenna array. The system model of the proposed architecture is established, including digital precoding and analog precoding processes, and the practical hardware limitations such as quantization errors of the digital-to-analog converter (DAC) and phase shifter resolution. In order to maximize the energy efficiency, this paper derives an energy efficiency model including spectral efficiency and system power consumption, and a hybrid precoding algorithm is proposed based on block coordinate descent to iteratively optimize the digital precoding matrix, analog precoding matrix, and DAC resolution. Simulation results under the NYUSIM-generated millimeter-wave channels show that the proposed hybrid beamforming architecture and precoding algorithm have higher energy efficiency than existing representative architectures and precoding algorithms under complete and partial channel state information, while the loss of spectral efficiency compared to fully connected architecture is less than 20%




Abstract:This paper studies an integrated sensing and communications (ISAC) system for low-altitude economy (LAE), where a ground base station (GBS) provides communication and navigation services for authorized unmanned aerial vehicles (UAVs), while sensing the low-altitude airspace to monitor the unauthorized mobile target. The expected communication sum-rate over a given flight period is maximized by jointly optimizing the beamforming at the GBS and UAVs' trajectories, subject to the constraints on the average signal-to-noise ratio requirement for sensing, the flight mission and collision avoidance of UAVs, as well as the maximum transmit power at the GBS. Typically, this is a sequential decision-making problem with the given flight mission. Thus, we transform it to a specific Markov decision process (MDP) model called episode task. Based on this modeling, we propose a novel LAE-oriented ISAC scheme, referred to as Deep LAE-ISAC (DeepLSC), by leveraging the deep reinforcement learning (DRL) technique. In DeepLSC, a reward function and a new action selection policy termed constrained noise-exploration policy are judiciously designed to fulfill various constraints. To enable efficient learning in episode tasks, we develop a hierarchical experience replay mechanism, where the gist is to employ all experiences generated within each episode to jointly train the neural network. Besides, to enhance the convergence speed of DeepLSC, a symmetric experience augmentation mechanism, which simultaneously permutes the indexes of all variables to enrich available experience sets, is proposed. Simulation results demonstrate that compared with benchmarks, DeepLSC yields a higher sum-rate while meeting the preset constraints, achieves faster convergence, and is more robust against different settings.




Abstract:This paper presents an overview on intelligent reflecting surface (IRS)-enabled sensing and communication for the forthcoming sixth-generation (6G) wireless networks, in which IRSs are strategically deployed to proactively reconfigure wireless environments to improve both sensing and communication (S&C) performance. First, we exploit a single IRS to enable wireless sensing in the base station's (BS's) non-line-of-sight (NLoS) area. In particular, we present three IRS-enabled NLoS target sensing architectures with fully-passive, semi-passive, and active IRSs, respectively. We compare their pros and cons by analyzing the fundamental sensing performance limits for target detection and parameter estimation. Next, we consider a single IRS to facilitate integrated sensing and communication (ISAC), in which the transmit signals at the BS are used for achieving both S&C functionalities, aided by the IRS through reflective beamforming. We present joint transmit signal and receiver processing designs for realizing efficient ISAC, and jointly optimize the transmit beamforming at the BS and reflective beamforming at the IRS to balance the fundamental performance tradeoff between S&C. Furthermore, we discuss multi-IRS networked ISAC, by particularly focusing on multi-IRS-enabled multi-link ISAC, multi-region ISAC, and ISAC signal routing, respectively. Finally, we highlight various promising research topics in this area to motivate future work.




Abstract:This letter exploits moving arrays to enable nearfield multiple-input multiple-output (MIMO) sensing via a limited number of antenna elements. We consider a scenario where a base station (BS) is equipped with a uniform linear array (ULA) on a moving platform. The objective is to locate a point target in the two-dimensional (2D) space by leveraging the near-field channel characteristics created by the movement of antenna arrays. Under this setup, we analyze the Cramer-Rao bound (CRB) for estimating the target's 2D coordinate, which provides the fundamental sensing performance limits for localization. It is revealed that our proposed design with a moving array achieves a CRB that is proportional to the CRB obtained by an equivalent extremely large ULA matching the platform's size. This shows that the movement of antenna array significantly enlarges its effective aperture to enable near-field sensing. Numerical results show that the proposed moving array design substantially enhances the target estimation performance compared to the conventional fixed array benchmark.