Abstract:Domain generalization has become a critical challenge in clinical prediction, where patient cohorts often exhibit shifting data distributions that degrade model performance. Typical domain generalization approaches struggle in real-world healthcare settings for two main reasons: (1) patient-specific domain labels are typically unavailable, making domain discovery especially difficult; (2) purely data-driven approaches overlook key clinical insights, leading to a gap in medical knowledge integration. To address these problems, we leverage hierarchical medical ontologies like the ICD-9-CM hierarchy to group diseases into higher-level categories and discover more flexible latent domains. In this paper, we introduce UdonCare, a hierarchy-guided framework that iteratively prunes fine-grained domains, encodes these refined domains, and applies a Siamese-type inference mechanism to separate domain-related signals from patient-level features. Experimental results on clinical datasets (MIMIC-III and MIMIC-IV) show that the proposed model achieves higher performance compared to other domain generalization baselines when substantial domain gaps presents, highlighting the untapped potential of medical knowledge for enhancing domain generalization in practical healthcare applications.
Abstract:Deep learning models trained on extensive Electronic Health Records (EHR) data have achieved high accuracy in diagnosis prediction, offering the potential to assist clinicians in decision-making and treatment planning. However, these models lack two crucial features that clinicians highly value: interpretability and interactivity. The ``black-box'' nature of these models makes it difficult for clinicians to understand the reasoning behind predictions, limiting their ability to make informed decisions. Additionally, the absence of interactive mechanisms prevents clinicians from incorporating their own knowledge and experience into the decision-making process. To address these limitations, we propose II-KEA, a knowledge-enhanced agent-driven causal discovery framework that integrates personalized knowledge databases and agentic LLMs. II-KEA enhances interpretability through explicit reasoning and causal analysis, while also improving interactivity by allowing clinicians to inject their knowledge and experience through customized knowledge bases and prompts. II-KEA is evaluated on both MIMIC-III and MIMIC-IV, demonstrating superior performance along with enhanced interpretability and interactivity, as evidenced by its strong results from extensive case studies.
Abstract:The adoption of digital systems in healthcare has resulted in the accumulation of vast electronic health records (EHRs), offering valuable data for machine learning methods to predict patient health outcomes. However, single-visit records of patients are often neglected in the training process due to the lack of annotations of next-visit information, thereby limiting the predictive and expressive power of machine learning models. In this paper, we present a novel framework MPLite that utilizes Multi-aspect Pretraining with Lab results through a light-weight neural network to enhance medical concept representation and predict future health outcomes of individuals. By incorporating both structured medical data and additional information from lab results, our approach fully leverages patient admission records. We design a pretraining module that predicts medical codes based on lab results, ensuring robust prediction by fusing multiple aspects of features. Our experimental evaluation using both MIMIC-III and MIMIC-IV datasets demonstrates improvements over existing models in diagnosis prediction and heart failure prediction tasks, achieving a higher weighted-F1 and recall with MPLite. This work reveals the potential of integrating diverse aspects of data to advance predictive modeling in healthcare.
Abstract:Graph Neural Networks (GNNs) are susceptible to distribution shifts, creating vulnerability and security issues in critical domains. There is a pressing need to enhance the generalizability of GNNs on out-of-distribution (OOD) test data. Existing methods that target learning an invariant (feature, structure)-label mapping often depend on oversimplified assumptions about the data generation process, which do not adequately reflect the actual dynamics of distribution shifts in graphs. In this paper, we introduce a more realistic graph data generation model using Structural Causal Models (SCMs), allowing us to redefine distribution shifts by pinpointing their origins within the generation process. Building on this, we propose a casual decoupling framework, DeCaf, that independently learns unbiased feature-label and structure-label mappings. We provide a detailed theoretical framework that shows how our approach can effectively mitigate the impact of various distribution shifts. We evaluate DeCaf across both real-world and synthetic datasets that demonstrate different patterns of shifts, confirming its efficacy in enhancing the generalizability of GNNs.
Abstract:Electronic Health Records (EHR) has revolutionized healthcare data management and prediction in the field of AI and machine learning. Accurate predictions of diagnosis and medications significantly mitigate health risks and provide guidance for preventive care. However, EHR driven models often have limited scope on understanding medical-domain knowledge and mostly rely on simple-and-sole ontologies. In addition, due to the missing features and incomplete disease coverage of EHR, most studies only focus on basic analysis on conditions and medication. We propose DualMAR, a framework that enhances EHR prediction tasks through both individual observation data and public knowledge bases. First, we construct a bi-hierarchical Diagnosis Knowledge Graph (KG) using verified public clinical ontologies and augment this KG via Large Language Models (LLMs); Second, we design a new proxy-task learning on lab results in EHR for pretraining, which further enhance KG representation and patient embeddings. By retrieving radial and angular coordinates upon polar space, DualMAR enables accurate predictions based on rich hierarchical and semantic embeddings from KG. Experiments also demonstrate that DualMAR outperforms state-of-the-art models, validating its effectiveness in EHR prediction and KG integration in medical domains.
Abstract:Key elements of human events are extracted as quadruples that consist of subject, relation, object, and timestamp. This representation can be extended to a quintuple by adding a fifth element: a textual summary that briefly describes the event. These quadruples or quintuples, when organized within a specific domain, form a temporal knowledge graph (TKG). Current learning frameworks focus on a few TKG-related tasks, such as predicting an object given a subject and a relation or forecasting the occurrences of multiple types of events (i.e., relation) in the next time window. They typically rely on complex structural and sequential models like graph neural networks (GNNs) and recurrent neural networks (RNNs) to update intermediate embeddings. However, these methods often neglect the contextual information inherent in each quintuple, which can be effectively captured through concise textual descriptions. In this paper, we investigate how large language models (LLMs) can streamline the design of TKG learning frameworks while maintaining competitive accuracy in prediction and forecasting tasks. We develop multiple prompt templates to frame the object prediction (OP) task as a standard question-answering (QA) task, suitable for instruction fine-tuning with an encoder-decoder generative LLM. For multi-event forecasting (MEF), we design simple yet effective prompt templates for each TKG quintuple. This novel approach removes the need for GNNs and RNNs, instead utilizing an encoder-only LLM to generate fixed intermediate embeddings, which are subsequently processed by a prediction head with a self-attention mechanism to forecast potential future relations. Extensive experiments on multiple real-world datasets using various evaluation metrics validate the effectiveness and robustness of our approach.
Abstract:Continual learning on graphs tackles the problem of training a graph neural network (GNN) where graph data arrive in a streaming fashion and the model tends to forget knowledge from previous tasks when updating with new data. Traditional continual learning strategies such as Experience Replay can be adapted to streaming graphs, however, these methods often face challenges such as inefficiency in preserving graph topology and incapability of capturing the correlation between old and new tasks. To address these challenges, we propose TA$\mathbb{CO}$, a (t)opology-(a)ware graph (co)arsening and (co)ntinual learning framework that stores information from previous tasks as a reduced graph. At each time period, this reduced graph expands by combining with a new graph and aligning shared nodes, and then it undergoes a "zoom out" process by reduction to maintain a stable size. We design a graph coarsening algorithm based on node representation proximities to efficiently reduce a graph and preserve topological information. We empirically demonstrate the learning process on the reduced graph can approximate that of the original graph. Our experiments validate the effectiveness of the proposed framework on three real-world datasets using different backbone GNN models.
Abstract:Graph Neural Networks (GNNs) have been widely used for various types of graph data processing and analytical tasks in different domains. Training GNNs over centralized graph data can be infeasible due to privacy concerns and regulatory restrictions. Thus, federated learning (FL) becomes a trending solution to address this challenge in a distributed learning paradigm. However, as GNNs may inherit historical bias from training data and lead to discriminatory predictions, the bias of local models can be easily propagated to the global model in distributed settings. This poses a new challenge in mitigating bias in federated GNNs. To address this challenge, we propose $\text{F}^2$GNN, a Fair Federated Graph Neural Network, that enhances group fairness of federated GNNs. As bias can be sourced from both data and learning algorithms, $\text{F}^2$GNN aims to mitigate both types of bias under federated settings. First, we provide theoretical insights on the connection between data bias in a training graph and statistical fairness metrics of the trained GNN models. Based on the theoretical analysis, we design $\text{F}^2$GNN which contains two key components: a fairness-aware local model update scheme that enhances group fairness of the local models on the client side, and a fairness-weighted global model update scheme that takes both data bias and fairness metrics of local models into consideration in the aggregation process. We evaluate $\text{F}^2$GNN empirically versus a number of baseline methods, and demonstrate that $\text{F}^2$GNN outperforms these baselines in terms of both fairness and model accuracy.
Abstract:Automatic coding of International Classification of Diseases (ICD) is a multi-label text categorization task that involves extracting disease or procedure codes from clinical notes. Despite the application of state-of-the-art natural language processing (NLP) techniques, there are still challenges including limited availability of data due to privacy constraints and the high variability of clinical notes caused by different writing habits of medical professionals and various pathological features of patients. In this work, we investigate the semi-structured nature of clinical notes and propose an automatic algorithm to segment them into sections. To address the variability issues in existing ICD coding models with limited data, we introduce a contrastive pre-training approach on sections using a soft multi-label similarity metric based on tree edit distance. Additionally, we design a masked section training strategy to enable ICD coding models to locate sections related to ICD codes. Extensive experimental results demonstrate that our proposed training strategies effectively enhance the performance of existing ICD coding methods.
Abstract:With the spreading of hate speech on social media in recent years, automatic detection of hate speech is becoming a crucial task and has attracted attention from various communities. This task aims to recognize online posts (e.g., tweets) that contain hateful information. The peculiarities of languages in social media, such as short and poorly written content, lead to the difficulty of learning semantics and capturing discriminative features of hate speech. Previous studies have utilized additional useful resources, such as sentiment hashtags, to improve the performance of hate speech detection. Hashtags are added as input features serving either as sentiment-lexicons or extra context information. However, our close investigation shows that directly leveraging these features without considering their context may introduce noise to classifiers. In this paper, we propose a novel approach to leverage sentiment hashtags to enhance hate speech detection in a natural language inference framework. We design a novel framework SRIC that simultaneously performs two tasks: (1) semantic relation inference between online posts and sentiment hashtags, and (2) sentiment classification on these posts. The semantic relation inference aims to encourage the model to encode sentiment-indicative information into representations of online posts. We conduct extensive experiments on two real-world datasets and demonstrate the effectiveness of our proposed framework compared with state-of-the-art representation learning models.