Abstract:While AI-generated content has garnered significant attention, achieving photo-realistic video synthesis remains a formidable challenge. Despite the promising advances in diffusion models for video generation quality, the complex model architecture and substantial computational demands for both training and inference create a significant gap between these models and real-world applications. This paper presents SNED, a superposition network architecture search method for efficient video diffusion model. Our method employs a supernet training paradigm that targets various model cost and resolution options using a weight-sharing method. Moreover, we propose the supernet training sampling warm-up for fast training optimization. To showcase the flexibility of our method, we conduct experiments involving both pixel-space and latent-space video diffusion models. The results demonstrate that our framework consistently produces comparable results across different model options with high efficiency. According to the experiment for the pixel-space video diffusion model, we can achieve consistent video generation results simultaneously across 64 x 64 to 256 x 256 resolutions with a large range of model sizes from 640M to 1.6B number of parameters for pixel-space video diffusion models.
Abstract:The success of denoising diffusion models in representing rich data distributions over 2D raster images has prompted research on extending them to other data representations, such as vector graphics. Unfortunately due to their variable structure and scarcity of vector training data, directly applying diffusion models on this domain remains a challenging problem. Using workarounds like optimization via Score Distillation Sampling (SDS) is also fraught with difficulty, as vector representations are non trivial to directly optimize and tend to result in implausible geometries such as redundant or self-intersecting shapes. NIVeL addresses these challenges by reinterpreting the problem on an alternative, intermediate domain which preserves the desirable properties of vector graphics -- mainly sparsity of representation and resolution-independence. This alternative domain is based on neural implicit fields expressed in a set of decomposable, editable layers. Based on our experiments, NIVeL produces text-to-vector graphics results of significantly better quality than the state-of-the-art.
Abstract:Diffusion Models (DMs) have exhibited superior performance in generating high-quality and diverse images. However, this exceptional performance comes at the cost of expensive architectural design, particularly due to the attention module heavily used in leading models. Existing works mainly adopt a retraining process to enhance DM efficiency. This is computationally expensive and not very scalable. To this end, we introduce the Attention-driven Training-free Efficient Diffusion Model (AT-EDM) framework that leverages attention maps to perform run-time pruning of redundant tokens, without the need for any retraining. Specifically, for single-denoising-step pruning, we develop a novel ranking algorithm, Generalized Weighted Page Rank (G-WPR), to identify redundant tokens, and a similarity-based recovery method to restore tokens for the convolution operation. In addition, we propose a Denoising-Steps-Aware Pruning (DSAP) approach to adjust the pruning budget across different denoising timesteps for better generation quality. Extensive evaluations show that AT-EDM performs favorably against prior art in terms of efficiency (e.g., 38.8% FLOPs saving and up to 1.53x speed-up over Stable Diffusion XL) while maintaining nearly the same FID and CLIP scores as the full model. Project webpage: https://atedm.github.io.
Abstract:Video super-resolution (VSR) approaches have shown impressive temporal consistency in upsampled videos. However, these approaches tend to generate blurrier results than their image counterparts as they are limited in their generative capability. This raises a fundamental question: can we extend the success of a generative image upsampler to the VSR task while preserving the temporal consistency? We introduce VideoGigaGAN, a new generative VSR model that can produce videos with high-frequency details and temporal consistency. VideoGigaGAN builds upon a large-scale image upsampler -- GigaGAN. Simply inflating GigaGAN to a video model by adding temporal modules produces severe temporal flickering. We identify several key issues and propose techniques that significantly improve the temporal consistency of upsampled videos. Our experiments show that, unlike previous VSR methods, VideoGigaGAN generates temporally consistent videos with more fine-grained appearance details. We validate the effectiveness of VideoGigaGAN by comparing it with state-of-the-art VSR models on public datasets and showcasing video results with $8\times$ super-resolution.
Abstract:Image customization has been extensively studied in text-to-image (T2I) diffusion models, leading to impressive outcomes and applications. With the emergence of text-to-video (T2V) diffusion models, its temporal counterpart, motion customization, has not yet been well investigated. To address the challenge of one-shot motion customization, we propose Customize-A-Video that models the motion from a single reference video and adapting it to new subjects and scenes with both spatial and temporal varieties. It leverages low-rank adaptation (LoRA) on temporal attention layers to tailor the pre-trained T2V diffusion model for specific motion modeling from the reference videos. To disentangle the spatial and temporal information during the training pipeline, we introduce a novel concept of appearance absorbers that detach the original appearance from the single reference video prior to motion learning. Our proposed method can be easily extended to various downstream tasks, including custom video generation and editing, video appearance customization, and multiple motion combination, in a plug-and-play fashion. Our project page can be found at https://anonymous-314.github.io.
Abstract:We present VecFusion, a new neural architecture that can generate vector fonts with varying topological structures and precise control point positions. Our approach is a cascaded diffusion model which consists of a raster diffusion model followed by a vector diffusion model. The raster model generates low-resolution, rasterized fonts with auxiliary control point information, capturing the global style and shape of the font, while the vector model synthesizes vector fonts conditioned on the low-resolution raster fonts from the first stage. To synthesize long and complex curves, our vector diffusion model uses a transformer architecture and a novel vector representation that enables the modeling of diverse vector geometry and the precise prediction of control points. Our experiments show that, in contrast to previous generative models for vector graphics, our new cascaded vector diffusion model generates higher quality vector fonts, with complex structures and diverse styles.
Abstract:We propose the first Large Reconstruction Model (LRM) that predicts the 3D model of an object from a single input image within just 5 seconds. In contrast to many previous methods that are trained on small-scale datasets such as ShapeNet in a category-specific fashion, LRM adopts a highly scalable transformer-based architecture with 500 million learnable parameters to directly predict a neural radiance field (NeRF) from the input image. We train our model in an end-to-end manner on massive multi-view data containing around 1 million objects, including both synthetic renderings from Objaverse and real captures from MVImgNet. This combination of a high-capacity model and large-scale training data empowers our model to be highly generalizable and produce high-quality 3D reconstructions from various testing inputs including real-world in-the-wild captures and images from generative models. Video demos and interactable 3D meshes can be found on this website: https://yiconghong.me/LRM/.
Abstract:We present ASSET, a neural architecture for automatically modifying an input high-resolution image according to a user's edits on its semantic segmentation map. Our architecture is based on a transformer with a novel attention mechanism. Our key idea is to sparsify the transformer's attention matrix at high resolutions, guided by dense attention extracted at lower image resolutions. While previous attention mechanisms are computationally too expensive for handling high-resolution images or are overly constrained within specific image regions hampering long-range interactions, our novel attention mechanism is both computationally efficient and effective. Our sparsified attention mechanism is able to capture long-range interactions and context, leading to synthesizing interesting phenomena in scenes, such as reflections of landscapes onto water or flora consistent with the rest of the landscape, that were not possible to generate reliably with previous convnets and transformer approaches. We present qualitative and quantitative results, along with user studies, demonstrating the effectiveness of our method.
Abstract:This paper introduces a model for producing stylized line drawings from 3D shapes. The model takes a 3D shape and a viewpoint as input, and outputs a drawing with textured strokes, with variations in stroke thickness, deformation, and color learned from an artist's style. The model is fully differentiable. We train its parameters from a single training drawing of another 3D shape. We show that, in contrast to previous image-based methods, the use of a geometric representation of 3D shape and 2D strokes allows the model to transfer important aspects of shape and texture style while preserving contours. Our method outputs the resulting drawing in a vector representation, enabling richer downstream analysis or editing in interactive applications.
Abstract:We propose a novel, end-to-end trainable, deep network called ParSeNet that decomposes a 3D point cloud into parametric surface patches, including B-spline patches as well as basic geometric primitives. ParSeNet is trained on a large-scale dataset of man-made 3D shapes and captures high-level semantic priors for shape decomposition. It handles a much richer class of primitives than prior work, and allows us to represent surfaces with higher fidelity. It also produces repeatable and robust parametrizations of a surface compared to purely geometric approaches. We present extensive experiments to validate our approach against analytical and learning-based alternatives.