Abstract:Large Language Models (LLMs) have recently displayed their extraordinary capabilities in language understanding. However, how to comprehensively assess the sentiment capabilities of LLMs continues to be a challenge. This paper investigates the ability of LLMs to detect and react to sentiment in text modal. As the integration of LLMs into diverse applications is on the rise, it becomes highly critical to comprehend their sensitivity to emotional tone, as it can influence the user experience and the efficacy of sentiment-driven tasks. We conduct a series of experiments to evaluate the performance of several prominent LLMs in identifying and responding appropriately to sentiments like positive, negative, and neutral emotions. The models' outputs are analyzed across various sentiment benchmarks, and their responses are compared with human evaluations. Our discoveries indicate that although LLMs show a basic sensitivity to sentiment, there are substantial variations in their accuracy and consistency, emphasizing the requirement for further enhancements in their training processes to better capture subtle emotional cues. Take an example in our findings, in some cases, the models might wrongly classify a strongly positive sentiment as neutral, or fail to recognize sarcasm or irony in the text. Such misclassifications highlight the complexity of sentiment analysis and the areas where the models need to be refined. Another aspect is that different LLMs might perform differently on the same set of data, depending on their architecture and training datasets. This variance calls for a more in-depth study of the factors that contribute to the performance differences and how they can be optimized.
Abstract:The recent advances in large language models (LLMs) have significantly expanded their applications across various fields such as language generation, summarization, and complex question answering. However, their application to privacy compliance and technical privacy reviews remains under-explored, raising critical concerns about their ability to adhere to global privacy standards and protect sensitive user data. This paper seeks to address this gap by providing a comprehensive case study evaluating LLMs' performance in privacy-related tasks such as privacy information extraction (PIE), legal and regulatory key point detection (KPD), and question answering (QA) with respect to privacy policies and data protection regulations. We introduce a Privacy Technical Review (PTR) framework, highlighting its role in mitigating privacy risks during the software development life-cycle. Through an empirical assessment, we investigate the capacity of several prominent LLMs, including BERT, GPT-3.5, GPT-4, and custom models, in executing privacy compliance checks and technical privacy reviews. Our experiments benchmark the models across multiple dimensions, focusing on their precision, recall, and F1-scores in extracting privacy-sensitive information and detecting key regulatory compliance points. While LLMs show promise in automating privacy reviews and identifying regulatory discrepancies, significant gaps persist in their ability to fully comply with evolving legal standards. We provide actionable recommendations for enhancing LLMs' capabilities in privacy compliance, emphasizing the need for robust model improvements and better integration with legal and regulatory requirements. This study underscores the growing importance of developing privacy-aware LLMs that can both support businesses in compliance efforts and safeguard user privacy rights.
Abstract:Video Moment Retrieval (VMR) aims to retrieve relevant moments of an untrimmed video corresponding to the query. While cross-modal interaction approaches have shown progress in filtering out query-irrelevant information in videos, they assume the precise alignment between the query semantics and the corresponding video moments, potentially overlooking the misunderstanding of the natural language semantics. To address this challenge, we propose a novel model called \textit{QD-VMR}, a query debiasing model with enhanced contextual understanding. Firstly, we leverage a Global Partial Aligner module via video clip and query features alignment and video-query contrastive learning to enhance the cross-modal understanding capabilities of the model. Subsequently, we employ a Query Debiasing Module to obtain debiased query features efficiently, and a Visual Enhancement module to refine the video features related to the query. Finally, we adopt the DETR structure to predict the possible target video moments. Through extensive evaluations of three benchmark datasets, QD-VMR achieves state-of-the-art performance, proving its potential to improve the accuracy of VMR. Further analytical experiments demonstrate the effectiveness of our proposed module. Our code will be released to facilitate future research.
Abstract:Extracting typical operational scenarios is essential for making flexible decisions in the dispatch of a new power system. This study proposed a novel deep time series aggregation scheme (DTSAs) to generate typical operational scenarios, considering the large amount of historical operational snapshot data. Specifically, DTSAs analyze the intrinsic mechanisms of different scheduling operational scenario switching to mathematically represent typical operational scenarios. A gramian angular summation field (GASF) based operational scenario image encoder was designed to convert operational scenario sequences into high-dimensional spaces. This enables DTSAs to fully capture the spatiotemporal characteristics of new power systems using deep feature iterative aggregation models. The encoder also facilitates the generation of typical operational scenarios that conform to historical data distributions while ensuring the integrity of grid operational snapshots. Case studies demonstrate that the proposed method extracted new fine-grained power system dispatch schemes and outperformed the latest high-dimensional featurescreening methods. In addition, experiments with different new energy access ratios were conducted to verify the robustness of the proposed method. DTSAs enables dispatchers to master the operation experience of the power system in advance, and actively respond to the dynamic changes of the operation scenarios under the high access rate of new energy.
Abstract:Video quality assessment (VQA) is a crucial task in the development of video compression standards, as it directly impacts the viewer experience. This paper presents the results of the Compressed Video Quality Assessment challenge, held in conjunction with the Advances in Image Manipulation (AIM) workshop at ECCV 2024. The challenge aimed to evaluate the performance of VQA methods on a diverse dataset of 459 videos, encoded with 14 codecs of various compression standards (AVC/H.264, HEVC/H.265, AV1, and VVC/H.266) and containing a comprehensive collection of compression artifacts. To measure the methods performance, we employed traditional correlation coefficients between their predictions and subjective scores, which were collected via large-scale crowdsourced pairwise human comparisons. For training purposes, participants were provided with the Compressed Video Quality Assessment Dataset (CVQAD), a previously developed dataset of 1022 videos. Up to 30 participating teams registered for the challenge, while we report the results of 6 teams, which submitted valid final solutions and code for reproducing the results. Moreover, we calculated and present the performance of state-of-the-art VQA methods on the developed dataset, providing a comprehensive benchmark for future research. The dataset, results, and online leaderboard are publicly available at https://challenges.videoprocessing.ai/challenges/compressed-video-quality-assessment.html.
Abstract:Robotic fish is one of the most promising directions of the new generation of underwater vehicles. Traditional biomimetic fish often mimic fish joints using tandem components like servos, which leads to increased volume, weight and control complexity. In this paper, a new double-joint robotic fish using a composite linkage was designed, where the propulsion mechanism transforms the single-degree-of-freedom rotation of the motor into a double-degree-of-freedom coupled motion, namely caudal peduncle translation and caudal fin rotation. Motion analysis of the propulsion mechanism demonstrates its ability to closely emulate the undulating movement observed in carangiform fish. Experimental results further validate the feasibility of the proposed propulsion mechanism. To improve propulsion efficiency, an analysis is conducted to explore the influence of swing angle amplitude and swing frequency on the swimming speed of the robotic fish. This examination establishes a practical foundation for future research on such robotic fish systems.
Abstract:Circuit representation learning has shown promising results in advancing the field of Electronic Design Automation (EDA). Existing models, such as DeepGate Family, primarily utilize Graph Neural Networks (GNNs) to encode circuit netlists into gate-level embeddings. However, the scalability of GNN-based models is fundamentally constrained by architectural limitations, impacting their ability to generalize across diverse and complex circuit designs. To address these challenges, we introduce DeepGate3, an enhanced architecture that integrates Transformer modules following the initial GNN processing. This novel architecture not only retains the robust gate-level representation capabilities of its predecessor, DeepGate2, but also enhances them with the ability to model subcircuits through a novel pooling transformer mechanism. DeepGate3 is further refined with multiple innovative supervision tasks, significantly enhancing its learning process and enabling superior representation of both gate-level and subcircuit structures. Our experiments demonstrate marked improvements in scalability and generalizability over traditional GNN-based approaches, establishing a significant step forward in circuit representation learning technology.
Abstract:Efficient extraction of spectral sequences and geospatial information has always been a hot topic in hyperspectral image classification. In terms of spectral sequence feature capture, RNN and Transformer have become mainstream classification frameworks due to their long-range feature capture capabilities. In terms of spatial information aggregation, CNN enhances the receptive field to retain integrated spatial information as much as possible. However, the spectral feature-capturing architectures exhibit low computational efficiency, and CNNs lack the flexibility to perceive spatial contextual information. To address these issues, this paper proposes GraphMamba--an efficient graph structure learning vision Mamba classification framework that fully considers HSI characteristics to achieve deep spatial-spectral information mining. Specifically, we propose a novel hyperspectral visual GraphMamba processing paradigm (HVGM) that preserves spatial-spectral features by constructing spatial-spectral cubes and utilizes linear spectral encoding to enhance the operability of subsequent tasks. The core components of GraphMamba include the HyperMamba module for improving computational efficiency and the SpectralGCN module for adaptive spatial context awareness. The HyperMamba mitigates clutter interference by employing the global mask (GM) and introduces a parallel training inference architecture to alleviate computational bottlenecks. The SpatialGCN incorporates weighted multi-hop aggregation (WMA) spatial encoding to focus on highly correlated spatial structural features, thus flexibly aggregating contextual information while mitigating spatial noise interference. Extensive experiments were conducted on three different scales of real HSI datasets, and compared with the state-of-the-art classification frameworks, GraphMamba achieved optimal performance.
Abstract:Cross-lingual chain-of-thought can effectively complete reasoning tasks across languages, which gains increasing attention. Recently, dominant approaches in the literature improve cross-lingual alignment capabilities by integrating reasoning knowledge from different languages. Despite achieving excellent performance, current methods still have two main challenges: (1) Manual language specification: They still highly rely on manually selecting the languages to integrate, severely affecting their generalizability; (2) Static weight allocation: Current methods simply integrate all languages equally. In fact, different language reasoning paths should have different weights to achieve better complementation and integration. Motivated by this, we introduce an Automatic Cross-lingual Alignment Planning (AutoCAP) for zero-shot chain-of-thought to address the above challenges. The core of AutoCAP consists of two components: (1) Automatic Language Selection Prompting to guide LLMs to select appropriate languages and (2) Automatic Weight Allocation Prompting to automatically allocate alignment weight scores to each reasoning path. Extensive experiments on several benchmarks reveal that AutoCAP achieves state-of-the-art performance, surpassing previous methods that required manual effort.
Abstract:Quantitative susceptibility mapping (QSM) is an MRI phase-based post-processing technique to extract the distribution of tissue susceptibilities, demonstrating significant potential in studying neurological diseases. However, the ill-conditioned nature of dipole inversion makes QSM reconstruction from the tissue field prone to noise and artifacts. In this work, we propose a novel deep learning-based IR2QSM method for QSM reconstruction. It is designed by iterating four times of a reverse concatenations and middle recurrent modules enhanced U-net, which could dramatically improve the efficiency of latent feature utilization. Simulated and in vivo experiments were conducted to compare IR2QSM with several traditional algorithms (MEDI and iLSQR) and state-of-the-art deep learning methods (U-net, xQSM, and LPCNN). The results indicated that IR2QSM was able to obtain QSM images with significantly increased accuracy and mitigated artifacts over other methods. Particularly, IR2QSM demonstrated on average the best NRMSE (27.59%) in simulated experiments, which is 15.48%, 7.86%, 17.24%, 9.26%, and 29.13% lower than iLSQR, MEDI, U-net, xQSM, LPCNN, respectively, and led to improved QSM results with fewer artifacts for the in vivo data.