Abstract:Although Large Language Models (LLMs) have achieved remarkable performance in numerous downstream tasks, their ubiquity has raised two significant concerns. One is that LLMs can hallucinate by generating content that contradicts relevant contextual information; the other is that LLMs can inadvertently leak private information due to input regurgitation. Many prior works have extensively studied each concern independently, but none have investigated them simultaneously. Furthermore, auditing the influence of provided context during open-ended generation with a privacy emphasis is understudied. To this end, we comprehensively characterize the influence and hallucination of contextual information during summarization. We introduce a definition for context influence and Context-Influence Decoding (CID), and then we show that amplifying the context (by factoring out prior knowledge) and the context being out of distribution with respect to prior knowledge increases the context's influence on an LLM. Moreover, we show that context influence gives a lower bound of the private information leakage of CID. We corroborate our analytical findings with experimental evaluations that show improving the F1 ROGUE-L score on CNN-DM for LLaMA 3 by $\textbf{10}$% over regular decoding also leads to $\textbf{1.5x}$ more influence by the context. Moreover, we empirically evaluate how context influence and hallucination are affected by (1) model capacity, (2) context size, (3) the length of the current response, and (4) different token $n$-grams of the context. Our code can be accessed here: https://github.com/james-flemings/context_influence.
Abstract:X-ray image-based medical report generation (MRG) is a pivotal area in artificial intelligence which can significantly reduce diagnostic burdens and patient wait times. Despite significant progress, we believe that the task has reached a bottleneck due to the limited benchmark datasets and the existing large models' insufficient capability enhancements in this specialized domain. Specifically, the recently released CheXpert Plus dataset lacks comparative evaluation algorithms and their results, providing only the dataset itself. This situation makes the training, evaluation, and comparison of subsequent algorithms challenging. Thus, we conduct a comprehensive benchmarking of existing mainstream X-ray report generation models and large language models (LLMs), on the CheXpert Plus dataset. We believe that the proposed benchmark can provide a solid comparative basis for subsequent algorithms and serve as a guide for researchers to quickly grasp the state-of-the-art models in this field. More importantly, we propose a large model for the X-ray image report generation using a multi-stage pre-training strategy, including self-supervised autoregressive generation and Xray-report contrastive learning, and supervised fine-tuning. Extensive experimental results indicate that the autoregressive pre-training based on Mamba effectively encodes X-ray images, and the image-text contrastive pre-training further aligns the feature spaces, achieving better experimental results. Source code can be found on \url{https://github.com/Event-AHU/Medical_Image_Analysis}.
Abstract:Camera-LiDAR fusion models significantly enhance perception performance in autonomous driving. The fusion mechanism leverages the strengths of each modality while minimizing their weaknesses. Moreover, in practice, camera-LiDAR fusion models utilize pre-trained backbones for efficient training. However, we argue that directly loading single-modal pre-trained camera and LiDAR backbones into camera-LiDAR fusion models introduces similar feature redundancy across modalities due to the nature of the fusion mechanism. Unfortunately, existing pruning methods are developed explicitly for single-modal models, and thus, they struggle to effectively identify these specific redundant parameters in camera-LiDAR fusion models. In this paper, to address the issue above on camera-LiDAR fusion models, we propose a novelty pruning framework Alternative Modality Masking Pruning (AlterMOMA), which employs alternative masking on each modality and identifies the redundant parameters. Specifically, when one modality parameters are masked (deactivated), the absence of features from the masked backbone compels the model to reactivate previous redundant features of the other modality backbone. Therefore, these redundant features and relevant redundant parameters can be identified via the reactivation process. The redundant parameters can be pruned by our proposed importance score evaluation function, Alternative Evaluation (AlterEva), which is based on the observation of the loss changes when certain modality parameters are activated and deactivated. Extensive experiments on the nuScene and KITTI datasets encompassing diverse tasks, baseline models, and pruning algorithms showcase that AlterMOMA outperforms existing pruning methods, attaining state-of-the-art performance.
Abstract:Large language models (LLMs) have obtained promising results in mathematical reasoning, which is a foundational skill for human intelligence. Most previous studies focus on improving and measuring the performance of LLMs based on textual math reasoning datasets (e.g., MATH, GSM8K). Recently, a few researchers have released English multimodal math datasets (e.g., MATHVISTA and MATH-V) to evaluate the effectiveness of large multimodal models (LMMs). In this paper, we release a Chinese multimodal math (CMM-Math) dataset, including benchmark and training parts, to evaluate and enhance the mathematical reasoning of LMMs. CMM-Math contains over 28,000 high-quality samples, featuring a variety of problem types (e.g., multiple-choice, fill-in-the-blank, and so on) with detailed solutions across 12 grade levels from elementary to high school in China. Specifically, the visual context may be present in the questions or opinions, which makes this dataset more challenging. Through comprehensive analysis, we discover that state-of-the-art LMMs on the CMM-Math dataset face challenges, emphasizing the necessity for further improvements in LMM development. We also propose a Multimodal Mathematical LMM (Math-LMM) to handle the problems with mixed input of multiple images and text segments. We train our model using three stages, including foundational pre-training, foundational fine-tuning, and mathematical fine-tuning. The extensive experiments indicate that our model effectively improves math reasoning performance by comparing it with the SOTA LMMs over three multimodal mathematical datasets.
Abstract:The Integrated Process Planning and Scheduling (IPPS) problem combines process route planning and shop scheduling to achieve high efficiency in manufacturing and maximize resource utilization, which is crucial for modern manufacturing systems. Traditional methods using Mixed Integer Linear Programming (MILP) and heuristic algorithms can not well balance solution quality and speed when solving IPPS. In this paper, we propose a novel end-to-end Deep Reinforcement Learning (DRL) method. We model the IPPS problem as a Markov Decision Process (MDP) and employ a Heterogeneous Graph Neural Network (GNN) to capture the complex relationships among operations, machines, and jobs. To optimize the scheduling strategy, we use Proximal Policy Optimization (PPO). Experimental results show that, compared to traditional methods, our approach significantly improves solution efficiency and quality in large-scale IPPS instances, providing superior scheduling strategies for modern intelligent manufacturing systems.
Abstract:Event camera-based visual tracking has drawn more and more attention in recent years due to the unique imaging principle and advantages of low energy consumption, high dynamic range, and dense temporal resolution. Current event-based tracking algorithms are gradually hitting their performance bottlenecks, due to the utilization of vision Transformer and the static template for target object localization. In this paper, we propose a novel Mamba-based visual tracking framework that adopts the state space model with linear complexity as a backbone network. The search regions and target template are fed into the vision Mamba network for simultaneous feature extraction and interaction. The output tokens of search regions will be fed into the tracking head for target localization. More importantly, we consider introducing a dynamic template update strategy into the tracking framework using the Memory Mamba network. By considering the diversity of samples in the target template library and making appropriate adjustments to the template memory module, a more effective dynamic template can be integrated. The effective combination of dynamic and static templates allows our Mamba-based tracking algorithm to achieve a good balance between accuracy and computational cost on multiple large-scale datasets, including EventVOT, VisEvent, and FE240hz. The source code will be released on https://github.com/Event-AHU/MambaEVT
Abstract:Sign Language Translation (SLT) is a core task in the field of AI-assisted disability. Unlike traditional SLT based on visible light videos, which is easily affected by factors such as lighting, rapid hand movements, and privacy breaches, this paper proposes the use of high-definition Event streams for SLT, effectively mitigating the aforementioned issues. This is primarily because Event streams have a high dynamic range and dense temporal signals, which can withstand low illumination and motion blur well. Additionally, due to their sparsity in space, they effectively protect the privacy of the target person. More specifically, we propose a new high-resolution Event stream sign language dataset, termed Event-CSL, which effectively fills the data gap in this area of research. It contains 14,827 videos, 14,821 glosses, and 2,544 Chinese words in the text vocabulary. These samples are collected in a variety of indoor and outdoor scenes, encompassing multiple angles, light intensities, and camera movements. We have benchmarked existing mainstream SLT works to enable fair comparison for future efforts. Based on this dataset and several other large-scale datasets, we propose a novel baseline method that fully leverages the Mamba model's ability to integrate temporal information of CNN features, resulting in improved sign language translation outcomes. Both the benchmark dataset and source code will be released on https://github.com/Event-AHU/OpenESL
Abstract:Inspired by the tremendous success of Large Language Models (LLMs), existing X-ray medical report generation methods attempt to leverage large models to achieve better performance. They usually adopt a Transformer to extract the visual features of a given X-ray image, and then, feed them into the LLM for text generation. How to extract more effective information for the LLMs to help them improve final results is an urgent problem that needs to be solved. Additionally, the use of visual Transformer models also brings high computational complexity. To address these issues, this paper proposes a novel context-guided efficient X-ray medical report generation framework. Specifically, we introduce the Mamba as the vision backbone with linear complexity, and the performance obtained is comparable to that of the strong Transformer model. More importantly, we perform context retrieval from the training set for samples within each mini-batch during the training phase, utilizing both positively and negatively related samples to enhance feature representation and discriminative learning. Subsequently, we feed the vision tokens, context information, and prompt statements to invoke the LLM for generating high-quality medical reports. Extensive experiments on three X-ray report generation datasets (i.e., IU-Xray, MIMIC-CXR, CheXpert Plus) fully validated the effectiveness of our proposed model. The source code of this work will be released on \url{https://github.com/Event-AHU/Medical_Image_Analysis}.
Abstract:Human Action Recognition (HAR) stands as a pivotal research domain in both computer vision and artificial intelligence, with RGB cameras dominating as the preferred tool for investigation and innovation in this field. However, in real-world applications, RGB cameras encounter numerous challenges, including light conditions, fast motion, and privacy concerns. Consequently, bio-inspired event cameras have garnered increasing attention due to their advantages of low energy consumption, high dynamic range, etc. Nevertheless, most existing event-based HAR datasets are low resolution ($346 \times 260$). In this paper, we propose a large-scale, high-definition ($1280 \times 800$) human action recognition dataset based on the CeleX-V event camera, termed CeleX-HAR. It encompasses 150 commonly occurring action categories, comprising a total of 124,625 video sequences. Various factors such as multi-view, illumination, action speed, and occlusion are considered when recording these data. To build a more comprehensive benchmark dataset, we report over 20 mainstream HAR models for future works to compare. In addition, we also propose a novel Mamba vision backbone network for event stream based HAR, termed EVMamba, which equips the spatial plane multi-directional scanning and novel voxel temporal scanning mechanism. By encoding and mining the spatio-temporal information of event streams, our EVMamba has achieved favorable results across multiple datasets. Both the dataset and source code will be released on \url{https://github.com/Event-AHU/CeleX-HAR}
Abstract:Current works focus on addressing the remote sensing change detection task using bi-temporal images. Although good performance can be achieved, however, seldom of they consider the motion cues which may also be vital. In this work, we revisit the widely adopted bi-temporal images-based framework and propose a novel Coarse-grained Temporal Mining Augmented (CTMA) framework. To be specific, given the bi-temporal images, we first transform them into a video using interpolation operations. Then, a set of temporal encoders is adopted to extract the motion features from the obtained video for coarse-grained changed region prediction. Subsequently, we design a novel Coarse-grained Foregrounds Augmented Spatial Encoder module to integrate both global and local information. We also introduce a motion augmented strategy that leverages motion cues as an additional output to aggregate with the spatial features for improved results. Meanwhile, we feed the input image pairs into the ResNet to get the different features and also the spatial blocks for fine-grained feature learning. More importantly, we propose a mask augmented strategy that utilizes coarse-grained changed regions, incorporating them into the decoder blocks to enhance the final changed prediction. Extensive experiments conducted on multiple benchmark datasets fully validated the effectiveness of our proposed framework for remote sensing image change detection. The source code of this paper will be released on https://github.com/Event-AHU/CTM_Remote_Sensing_Change_Detection