Abstract:This document consolidates publicly reported technical details about Metas Llama 4 model family. It summarizes (i) released variants (Scout and Maverick) and the broader herd context including the previewed Behemoth teacher model, (ii) architectural characteristics beyond a high-level MoE description covering routed/shared-expert structure, early-fusion multimodality, and long-context design elements reported for Scout (iRoPE and length generalization strategies), (iii) training disclosures spanning pre-training, mid-training for long-context extension, and post-training methodology (lightweight SFT, online RL, and lightweight DPO) as described in release materials, (iv) developer-reported benchmark results for both base and instruction-tuned checkpoints, and (v) practical deployment constraints observed across major serving environments, including provider-specific context limits and quantization packaging. The manuscript also summarizes licensing obligations relevant to redistribution and derivative naming, and reviews publicly described safeguards and evaluation practices. The goal is to provide a compact technical reference for researchers and practitioners who need precise, source-backed facts about Llama 4.
Abstract:As high-quality data becomes increasingly difficult to obtain, data-free self-evolution has emerged as a promising paradigm. This approach allows large language models (LLMs) to autonomously generate and solve complex problems, thereby improving their reasoning capabilities. However, multi-turn search agents struggle in data-free self-evolution due to the limited question diversity and the substantial compute required for multi-step reasoning and tool using. In this work, we introduce Dr. Zero, a framework enabling search agents to effectively self-evolve without any training data. In particular, we design a self-evolution feedback loop where a proposer generates diverse questions to train a solver initialized from the same base model. As the solver evolves, it incentivizes the proposer to produce increasingly difficult yet solvable tasks, thus establishing an automated curriculum to refine both agents. To enhance training efficiency, we also introduce hop-grouped relative policy optimization (HRPO). This method clusters structurally similar questions to construct group-level baselines, effectively minimizing the sampling overhead in evaluating each query's individual difficulty and solvability. Consequently, HRPO significantly reduces the compute requirements for solver training without compromising performance or stability. Extensive experiment results demonstrate that the data-free Dr. Zero matches or surpasses fully supervised search agents, proving that complex reasoning and search capabilities can emerge solely through self-evolution.
Abstract:Precise localization of GUI elements is crucial for the development of GUI agents. Traditional methods rely on bounding box or center-point regression, neglecting spatial interaction uncertainty and visual-semantic hierarchies. Recent methods incorporate attention mechanisms but still face two key issues: (1) ignoring processing background regions causes attention drift from the desired area, and (2) uniform modeling the target UI element fails to distinguish between its center and edges, leading to click imprecision. Inspired by how humans visually process and interact with GUI elements, we propose the Valley-to-Peak (V2P) method to address these issues. To mitigate background distractions, V2P introduces a suppression attention mechanism that minimizes the model's focus on irrelevant regions to highlight the intended region. For the issue of center-edge distinction, V2P applies a Fitts' Law-inspired approach by modeling GUI interactions as 2D Gaussian heatmaps where the weight gradually decreases from the center towards the edges. The weight distribution follows a Gaussian function, with the variance determined by the target's size. Consequently, V2P effectively isolates the target area and teaches the model to concentrate on the most essential point of the UI element. The model trained by V2P achieves the performance with 92.4\% and 52.5\% on two benchmarks ScreenSpot-v2 and ScreenSpot-Pro (see Fig.~\ref{fig:main_results_charts}). Ablations further confirm each component's contribution, underscoring V2P's generalizability in precise GUI grounding tasks and its potential for real-world deployment in future GUI agents.
Abstract:The advancement of LLM agents with tool-use capabilities requires diverse and complex training corpora. Existing data generation methods, which predominantly follow a paradigm of random sampling and shallow generation, often yield simple and homogeneous trajectories that fail to capture complex, implicit logical dependencies. To bridge this gap, we introduce HardGen, an automatic agentic pipeline designed to generate hard tool-use training samples with verifiable reasoning. Firstly, HardGen establishes a dynamic API Graph built upon agent failure cases, from which it samples to synthesize hard traces. Secondly, these traces serve as conditional priors to guide the instantiation of modular, abstract advanced tools, which are subsequently leveraged to formulate hard queries. Finally, the advanced tools and hard queries enable the generation of verifiable complex Chain-of-Thought (CoT), with a closed-loop evaluation feedback steering the continuous refinement of the process. Extensive evaluations demonstrate that a 4B parameter model trained with our curated dataset achieves superior performance compared to several leading open-source and closed-source competitors (e.g., GPT-5.2, Gemini-3-Pro and Claude-Opus-4.5). Our code, models, and dataset will be open-sourced to facilitate future research.
Abstract:Movable antenna (MA) has emerged as a promising technology to enhance wireless communication performance by exploiting the new degree of freedom (DoF) via antenna position optimization. In this letter, we investigate the MA-enhanced wide beam coverage over multiple subregions in the spatial domain. Specifically, we aim to maximize the minimum beam gain over the desired subregions by jointly optimizing the transmit beamforming and antenna position vector (APV). Although this problem is non-convex, we propose an efficient algorithm to solve it by leveraging the similarity between the considered multi-region coverage and classical multi-notch filter (MNF) design. In particular, we construct a spatial MNF-based transmit beamforming vector by assuming a continuous amplitude and phase-shift profile within the antenna movement region. Based on this continuous profile, we propose a sequential update algorithm to select an optimal subset of MA positions for multi-region coverage, jointly with a Gibbs sampling (GS) procedure to avoid undesired local optimum. Numerical results show that our proposed algorithm can significantly outperform conventional fixed position antennas (FPAs) and achieve a comparable performance to the alternating optimization (AO) algorithm with dramatically lower complexity.
Abstract:Vegetation index (VI) saturation during the dense canopy stage and limited ground-truth annotations of winter wheat constrain accurate estimation of LAI and SPAD. Existing VI-based and texture-driven machine learning methods exhibit limited feature expressiveness. In addition, deep learning baselines suffer from domain gaps and high data demands, which restrict their generalization. Therefore, this study proposes the Multi-Channel Vegetation Indices Saturation Aware Net (MCVI-SANet), a lightweight semi-supervised vision model. The model incorporates a newly designed Vegetation Index Saturation-Aware Block (VI-SABlock) for adaptive channel-spatial feature enhancement. It also integrates a VICReg-based semi-supervised strategy to further improve generalization. Datasets were partitioned using a vegetation height-informed strategy to maintain representativeness across growth stages. Experiments over 10 repeated runs demonstrate that MCVI-SANet achieves state-of-the-art accuracy. The model attains an average R2 of 0.8123 and RMSE of 0.4796 for LAI, and an average R2 of 0.6846 and RMSE of 2.4222 for SPAD. This performance surpasses the best-performing baselines, with improvements of 8.95% in average LAI R2 and 8.17% in average SPAD R2. Moreover, MCVI-SANet maintains high inference speed with only 0.10M parameters. Overall, the integration of semi-supervised learning with agronomic priors provides a promising approach for enhancing remote sensing-based precision agriculture.
Abstract:At the most basic level, pixels are the source of the visual information through which we perceive the world. Pixels contain information at all levels, ranging from low-level attributes to high-level concepts. Autoencoders represent a classical and long-standing paradigm for learning representations from pixels or other raw inputs. In this work, we demonstrate that autoencoder-based self-supervised learning remains competitive today and can produce strong representations for downstream tasks, while remaining simple, stable, and efficient. Our model, codenamed "Pixio", is an enhanced masked autoencoder (MAE) with more challenging pre-training tasks and more capable architectures. The model is trained on 2B web-crawled images with a self-curation strategy with minimal human curation. Pixio performs competitively across a wide range of downstream tasks in the wild, including monocular depth estimation (e.g., Depth Anything), feed-forward 3D reconstruction (i.e., MapAnything), semantic segmentation, and robot learning, outperforming or matching DINOv3 trained at similar scales. Our results suggest that pixel-space self-supervised learning can serve as a promising alternative and a complement to latent-space approaches.
Abstract:Timely and accurate detection of foliar diseases is vital for safeguarding crop growth and reducing yield losses. Yet, in real-field conditions, cluttered backgrounds, domain shifts, and limited lesion-level datasets hinder robust modeling. To address these challenges, we release Daylily-Leaf, a paired lesion-level dataset comprising 1,746 RGB images and 7,839 lesions captured under both ideal and in-field conditions, and propose TCLeaf-Net, a transformer-convolution hybrid detector optimized for real-field use. TCLeaf-Net is designed to tackle three major challenges. To mitigate interference from complex backgrounds, the transformer-convolution module (TCM) couples global context with locality-preserving convolution to suppress non-leaf regions. To reduce information loss during downsampling, the raw-scale feature recalling and sampling (RSFRS) block combines bilinear resampling and convolution to preserve fine spatial detail. To handle variations in lesion scale and feature shifts, the deformable alignment block with FPN (DFPN) employs offset-based alignment and multi-receptive-field perception to strengthen multi-scale fusion. Experimental results show that on the in-field split of the Daylily-Leaf dataset, TCLeaf-Net improves mAP@50 by 5.4 percentage points over the baseline model, reaching 78.2\%, while reducing computation by 7.5 GFLOPs and GPU memory usage by 8.7\%. Moreover, the model outperforms recent YOLO and RT-DETR series in both precision and recall, and demonstrates strong performance on the PlantDoc, Tomato-Leaf, and Rice-Leaf datasets, validating its robustness and generalizability to other plant disease detection scenarios.




Abstract:Despite the effectiveness of quantization-aware training (QAT) in compressing deep neural networks, its performance on multi-task architectures often degrades significantly due to task-specific feature discrepancies and gradient conflicts. To address these challenges, we propose Gradient-Aware Balanced Feature Fusion (GABFusion), which dynamically balances gradient magnitudes and fuses task-specific features in a quantization-friendly manner. We further introduce Attention Distribution Alignment (ADA), a feature-level distillation strategy tailored for quantized models. Our method demonstrates strong generalization across network architectures and QAT algorithms, with theoretical guarantees on gradient bias reduction. Extensive experiments demonstrate that our strategy consistently enhances a variety of QAT methods across different network architectures and bit-widths. On PASCAL VOC and COCO datasets, the proposed approach achieves average mAP improvements of approximately 3.3% and 1.6%, respectively. When applied to YOLOv5 under 4-bit quantization, our method narrows the accuracy gap with the full-precision model to only 1.7% on VOC, showcasing its effectiveness in preserving performance under low-bit constraints. Notably, the proposed framework is modular, easy to integrate, and compatible with any existing QAT technique-enhancing the performance of quantized models without requiring modifications to the original network architecture.
Abstract:Learning manipulation skills from human demonstration videos presents a promising yet challenging problem, primarily due to the significant embodiment gap between human body and robot manipulators. Existing methods rely on paired datasets or hand-crafted rewards, which limit scalability and generalization. We propose TrajSkill, a framework for Trajectory Conditioned Cross-embodiment Skill Transfer, enabling robots to acquire manipulation skills directly from human demonstration videos. Our key insight is to represent human motions as sparse optical flow trajectories, which serve as embodiment-agnostic motion cues by removing morphological variations while preserving essential dynamics. Conditioned on these trajectories together with visual and textual inputs, TrajSkill jointly synthesizes temporally consistent robot manipulation videos and translates them into executable actions, thereby achieving cross-embodiment skill transfer. Extensive experiments are conducted, and the results on simulation data (MetaWorld) show that TrajSkill reduces FVD by 39.6\% and KVD by 36.6\% compared with the state-of-the-art, and improves cross-embodiment success rate by up to 16.7\%. Real-robot experiments in kitchen manipulation tasks further validate the effectiveness of our approach, demonstrating practical human-to-robot skill transfer across embodiments.