Abstract:The human ability to seamlessly perform multimodal reasoning and physical interaction in the open world is a core goal for general-purpose embodied intelligent systems. Recent vision-language-action (VLA) models, which are co-trained on large-scale robot and visual-text data, have demonstrated notable progress in general robot control. However, they still fail to achieve human-level flexibility in interleaved reasoning and interaction. In this work, introduce EO-Robotics, consists of EO-1 model and EO-Data1.5M dataset. EO-1 is a unified embodied foundation model that achieves superior performance in multimodal embodied reasoning and robot control through interleaved vision-text-action pre-training. The development of EO-1 is based on two key pillars: (i) a unified architecture that processes multimodal inputs indiscriminately (image, text, video, and action), and (ii) a massive, high-quality multimodal embodied reasoning dataset, EO-Data1.5M, which contains over 1.5 million samples with emphasis on interleaved vision-text-action comprehension. EO-1 is trained through synergies between auto-regressive decoding and flow matching denoising on EO-Data1.5M, enabling seamless robot action generation and multimodal embodied reasoning. Extensive experiments demonstrate the effectiveness of interleaved vision-text-action learning for open-world understanding and generalization, validated through a variety of long-horizon, dexterous manipulation tasks across multiple embodiments. This paper details the architecture of EO-1, the data construction strategy of EO-Data1.5M, and the training methodology, offering valuable insights for developing advanced embodied foundation models.
Abstract:Lensless fiber endomicroscope is an emerging tool for in-vivo microscopic imaging, where quantitative phase imaging (QPI) can be utilized as a label-free method to enhance image contrast. However, existing single-shot phase reconstruction methods through lensless fiber endomicroscope typically perform well on simple images but struggle with complex microscopic structures. Here, we propose a speckle-conditioned diffusion model (SpecDiffusion), which reconstructs phase images directly from speckles captured at the detection side of a multi-core fiber (MCF). Unlike conventional neural networks, SpecDiffusion employs iterative phase denoising steps for speckle-driven phase reconstruction. The iteration scheme allows SpecDiffusion to break down the phase reconstruction process into multiple steps, gradually building up to the final phase image. This attribute alleviates the computation challenge at each step and enables the reconstruction of rich details in complex microscopic images. To validate its efficacy, we build an optical system to capture speckles from MCF and construct a dataset consisting of 100,000 paired images. SpecDiffusion provides high-fidelity phase reconstruction results and shows powerful generalization capacity for unseen objects, such as test charts and biological tissues, reducing the average mean absolute error of the reconstructed tissue images by 7 times. Furthermore, the reconstructed tissue images using SpecDiffusion shows higher accuracy in zero-shot cell segmentation tasks compared to the conventional method, demonstrating the potential for further cell morphology analysis through the learning-based lensless fiber endomicroscope. SpecDiffusion offers a precise and generalized method to phase reconstruction through scattering media, including MCFs, opening new perspective in lensless fiber endomicroscopic imaging.