Abstract:Training data plays a crucial role in Large Language Models (LLM) scaling, yet high quality data is of limited supply. Synthetic data techniques offer a potential path toward sidestepping these limitations. We conduct a large-scale empirical investigation (>1000 LLMs with >100k GPU hours) using a unified protocol and scaling laws, comparing natural web data, diverse synthetic types (rephrased text, generated textbooks), and mixtures of natural and synthetic data. Specifically, we found pre-training on rephrased synthetic data \textit{alone} is not faster than pre-training on natural web texts; while pre-training on 1/3 rephrased synthetic data mixed with 2/3 natural web texts can speed up 5-10x (to reach the same validation loss) at larger data budgets. Pre-training on textbook-style synthetic data \textit{alone} results in notably higher loss on many downstream domains especially at small data budgets. "Good" ratios of synthetic data in training data mixtures depend on the model size and data budget, empirically converging to ~30% for rephrased synthetic data. Larger generator models do not necessarily yield better pre-training data than ~8B-param models. These results contribute mixed evidence on "model collapse" during large-scale single-round (n=1) model training on synthetic data--training on rephrased synthetic data shows no degradation in performance in foreseeable scales whereas training on mixtures of textbook-style pure-generated synthetic data shows patterns predicted by "model collapse". Our work demystifies synthetic data in pre-training, validates its conditional benefits, and offers practical guidance.
Abstract:Recent work has shown that distilling reasoning traces from a larger teacher model via supervised finetuning outperforms reinforcement learning with the smaller student model alone (Guo et al. 2025). However, there has not been a systematic study of what kind of reasoning demonstrations from the teacher are most effective in improving the student model's reasoning capabilities. In this work we curate high-quality "NaturalThoughts" by selecting reasoning traces from a strong teacher model based on a large pool of questions from NaturalReasoning (Yuan et al. 2025). We first conduct a systematic analysis of factors that affect distilling reasoning capabilities, in terms of sample efficiency and scalability for general reasoning tasks. We observe that simply scaling up data size with random sampling is a strong baseline with steady performance gains. Further, we find that selecting difficult examples that require more diverse reasoning strategies is more sample-efficient to transfer the teacher model's reasoning skills. Evaluated on both Llama and Qwen models, training with NaturalThoughts outperforms existing reasoning datasets such as OpenThoughts, LIMO, etc. on general STEM reasoning benchmarks including GPQA-Diamond, MMLU-Pro and SuperGPQA.