What is Image Inpainting? Image inpainting is a task of reconstructing missing regions in an image. It is an important problem in computer vision and an essential functionality in many imaging and graphics applications, e.g., object removal, image restoration, manipulation, re-targeting, compositing, and image-based rendering.
Papers and Code
Jun 14, 2025
Abstract:Image inpainting is the task of reconstructing missing or damaged parts of an image in a way that seamlessly blends with the surrounding content. With the advent of advanced generative models, especially diffusion models and generative adversarial networks, inpainting has achieved remarkable improvements in visual quality and coherence. However, achieving seamless continuity remains a significant challenge. In this work, we propose two novel methods to address discrepancy issues in diffusion-based inpainting models. First, we introduce a modified Variational Autoencoder that corrects color imbalances, ensuring that the final inpainted results are free of color mismatches. Second, we propose a two-step training strategy that improves the blending of generated and existing image content during the diffusion process. Through extensive experiments, we demonstrate that our methods effectively reduce discontinuity and produce high-quality inpainting results that are coherent and visually appealing.
Via

Jun 17, 2025
Abstract:Image restoration faces challenges including ineffective feature fusion, computational bottlenecks and inefficient diffusion processes. To address these, we propose DiffRWKVIR, a novel framework unifying Test-Time Training (TTT) with efficient diffusion. Our approach introduces three key innovations: (1) Omni-Scale 2D State Evolution extends RWKV's location-dependent parameterization to hierarchical multi-directional 2D scanning, enabling global contextual awareness with linear complexity O(L); (2) Chunk-Optimized Flash Processing accelerates intra-chunk parallelism by 3.2x via contiguous chunk processing (O(LCd) complexity), reducing sequential dependencies and computational overhead; (3) Prior-Guided Efficient Diffusion extracts a compact Image Prior Representation (IPR) in only 5-20 steps, proving 45% faster training/inference than DiffIR while solving computational inefficiency in denoising. Evaluated across super-resolution and inpainting benchmarks (Set5, Set14, BSD100, Urban100, Places365), DiffRWKVIR outperforms SwinIR, HAT, and MambaIR/v2 in PSNR, SSIM, LPIPS, and efficiency metrics. Our method establishes a new paradigm for adaptive, high-efficiency image restoration with optimized hardware utilization.
* Submitted to The 8th Chinese Conference on Pattern Recognition and
Computer Vision (2025). Contact to nomodeset@qq.com. Source code will open in
4 months
Via

Jun 17, 2025
Abstract:Deep learning in medical imaging faces obstacles: limited data diversity, ethical issues, high acquisition costs, and the need for precise annotations. Bleeding detection and localization during surgery is especially challenging due to the scarcity of high-quality datasets that reflect real surgical scenarios. We propose orGAN, a GAN-based system for generating high-fidelity, annotated surgical images of bleeding. By leveraging small "mimicking organ" datasets, synthetic models that replicate tissue properties and bleeding, our approach reduces ethical concerns and data-collection costs. orGAN builds on StyleGAN with Relational Positional Learning to simulate bleeding events realistically and mark bleeding coordinates. A LaMa-based inpainting module then restores clean, pre-bleed visuals, enabling precise pixel-level annotations. In evaluations, a balanced dataset of orGAN and mimicking-organ images achieved 90% detection accuracy in surgical settings and up to 99% frame-level accuracy. While our development data lack diverse organ morphologies and contain intraoperative artifacts, orGAN markedly advances ethical, efficient, and cost-effective creation of realistic annotated bleeding datasets, supporting broader integration of AI in surgical practice.
* 24 pages, 7figures
Via

Jun 16, 2025
Abstract:Video face restoration faces a critical challenge in maintaining temporal consistency while recovering fine facial details from degraded inputs. This paper presents a novel approach that extends Vector-Quantized Variational Autoencoders (VQ-VAEs), pretrained on static high-quality portraits, into a video restoration framework through variational latent space modeling. Our key innovation lies in reformulating discrete codebook representations as Dirichlet-distributed continuous variables, enabling probabilistic transitions between facial features across frames. A spatio-temporal Transformer architecture jointly models inter-frame dependencies and predicts latent distributions, while a Laplacian-constrained reconstruction loss combined with perceptual (LPIPS) regularization enhances both pixel accuracy and visual quality. Comprehensive evaluations on blind face restoration, video inpainting, and facial colorization tasks demonstrate state-of-the-art performance. This work establishes an effective paradigm for adapting intensive image priors, pretrained on high-quality images, to video restoration while addressing the critical challenge of flicker artifacts. The source code has been open-sourced and is available at https://github.com/fudan-generative-vision/DicFace.
Via

Jun 15, 2025
Abstract:The malformed hands in the AI-generated images seriously affect the authenticity of the images. To refine malformed hands, existing depth-based approaches use a hand depth estimator to guide the refinement of malformed hands. Due to the performance limitations of the hand depth estimator, many hand details cannot be represented, resulting in errors in the generated hands, such as confusing the palm and the back of the hand. To solve this problem, we propose a 3D mesh-guided refinement framework using a diffusion pipeline. We use a state-of-the-art 3D hand mesh estimator, which provides more details of the hands. For training, we collect and reannotate a dataset consisting of RGB images and 3D hand mesh. Then we design a diffusion inpainting model to generate refined outputs guided by 3D hand meshes. For inference, we propose a double check algorithm to facilitate the 3D hand mesh estimator to obtain robust hand mesh guidance to obtain our refined results. Beyond malformed hand refinement, we propose a novel hand pose transformation method. It increases the flexibility and diversity of the malformed hand refinement task. We made the restored images mimic the hand poses of the reference images. The pose transformation requires no additional training. Extensive experimental results demonstrate the superior performance of our proposed method.
Via

Jun 13, 2025
Abstract:We introduce a diffusion-based framework that performs aligned novel view image and geometry generation via a warping-and-inpainting methodology. Unlike prior methods that require dense posed images or pose-embedded generative models limited to in-domain views, our method leverages off-the-shelf geometry predictors to predict partial geometries viewed from reference images, and formulates novel-view synthesis as an inpainting task for both image and geometry. To ensure accurate alignment between generated images and geometry, we propose cross-modal attention distillation, where attention maps from the image diffusion branch are injected into a parallel geometry diffusion branch during both training and inference. This multi-task approach achieves synergistic effects, facilitating geometrically robust image synthesis as well as well-defined geometry prediction. We further introduce proximity-based mesh conditioning to integrate depth and normal cues, interpolating between point cloud and filtering erroneously predicted geometry from influencing the generation process. Empirically, our method achieves high-fidelity extrapolative view synthesis on both image and geometry across a range of unseen scenes, delivers competitive reconstruction quality under interpolation settings, and produces geometrically aligned colored point clouds for comprehensive 3D completion. Project page is available at https://cvlab-kaist.github.io/MoAI.
Via

Jun 16, 2025
Abstract:The success of diffusion models has driven interest in performing conditional sampling via training-free guidance of the denoising process to solve image restoration and other inverse problems. A popular class of methods, based on Diffusion Posterior Sampling (DPS), attempts to approximate the intractable posterior score function directly. In this work, we present a novel expression for the exact posterior score for purely denoising tasks that is tractable in terms of the unconditional score function. We leverage this result to analyze the time-dependent error in the DPS score for denoising tasks and compute step sizes on the fly to minimize the error at each time step. We demonstrate that these step sizes are transferable to related inverse problems such as colorization, random inpainting, and super resolution. Despite its simplicity, this approach is competitive with state-of-the-art techniques and enables sampling with fewer time steps than DPS.
Via

Jun 12, 2025
Abstract:In-context image editing aims to modify images based on a contextual sequence comprising text and previously generated images. Existing methods typically depend on task-specific pipelines and expert models (e.g., segmentation and inpainting) to curate training data. In this work, we explore whether an in-context image editing model can be learned directly from videos. We introduce a scalable approach to annotate videos as interleaved multimodal sequences. To effectively learn from this data, we design a block-causal diffusion transformer trained on three proxy tasks: next-image prediction, current segmentation prediction, and next-segmentation prediction. Additionally, we propose a novel multi-turn image editing benchmark to advance research in this area. Extensive experiments demonstrate that our model exhibits strong in-context image editing capabilities and achieves state-of-the-art results on two multi-turn image editing benchmarks. Despite being trained exclusively on videos, our model also shows promising abilities in multi-concept composition, story generation, and chain-of-editing applications.
Via

Jun 11, 2025
Abstract:Supervised machine learning has enabled accurate pathology detection in brain MRI, but requires training data from diseased subjects that may not be readily available in some scenarios, for example, in the case of rare diseases. Reconstruction-based unsupervised anomaly detection, in particular using diffusion models, has gained popularity in the medical field as it allows for training on healthy images alone, eliminating the need for large disease-specific cohorts. These methods assume that a model trained on normal data cannot accurately represent or reconstruct anomalies. However, this assumption often fails with models failing to reconstruct healthy tissue or accurately reconstruct abnormal regions i.e., failing to remove anomalies. In this work, we introduce a novel conditional diffusion model framework for anomaly detection and healthy image reconstruction in brain MRI. Our weakly supervised approach integrates synthetically generated pseudo-pathology images into the modeling process to better guide the reconstruction of healthy images. To generate these pseudo-pathologies, we apply fluid-driven anomaly randomization to augment real pathology segmentation maps from an auxiliary dataset, ensuring that the synthetic anomalies are both realistic and anatomically coherent. We evaluate our model's ability to detect pathology, using both synthetic anomaly datasets and real pathology from the ATLAS dataset. In our extensive experiments, our model: (i) consistently outperforms variational autoencoders, and conditional and unconditional latent diffusion; and (ii) surpasses on most datasets, the performance of supervised inpainting methods with access to paired diseased/healthy images.
Via

Jun 05, 2025
Abstract:We present a new viewpoint on a reconstructing multidimensional geological fields from sparse observations. Drawing inspiration from deterministic image inpainting techniques, we model a partially observed spatial field as a multidimensional tensor and recover missing values by enforcing a global low-rank structure. Our approach combines ideas from tensor completion and geostatistics, providing a robust optimization framework. Experiments on synthetic geological fields demonstrate that used tensor completion method significant improvements in reconstruction accuracy over ordinary kriging for various percent of observed data.
Via
