Image inpainting is a task of reconstructing missing regions in an image. It is an important problem in computer vision and an essential functionality in many imaging and graphics applications, e.g., object removal, image restoration, manipulation, re-targeting, compositing, and image-based rendering.
Generating immersive 3D scenes from texts is a core task in computer vision, crucial for applications in virtual reality and game development. Despite the promise of leveraging 2D diffusion priors, existing methods suffer from spatial blindness and rely on predefined trajectories that fail to exploit the inner relationships among salient objects. Consequently, these approaches are unable to comprehend the semantic layout, preventing them from exploring the scene adaptively to infer occluded content. Moreover, current inpainting models operate in 2D image space, struggling to plausibly fill holes caused by camera motion. To address these limitations, we propose RoamScene3D, a novel framework that bridges the gap between semantic guidance and spatial generation. Our method reasons about the semantic relations among objects and produces consistent and photorealistic scenes. Specifically, we employ a vision-language model (VLM) to construct a scene graph that encodes object relations, guiding the camera to perceive salient object boundaries and plan an adaptive roaming trajectory. Furthermore, to mitigate the limitations of static 2D priors, we introduce a Motion-Injected Inpainting model that is fine-tuned on a synthetic panoramic dataset integrating authentic camera trajectories, making it adaptive to camera motion. Extensive experiments demonstrate that with semantic reasoning and geometric constraints, our method significantly outperforms state-of-the-art approaches in producing consistent and photorealistic scenes. Our code is available at https://github.com/JS-CHU/RoamScene3D.
Obstructions such as raindrops, fences, or dust degrade captured images, especially when mechanical cleaning is infeasible. Conventional solutions to obstructions rely on a bulky compound optics array or computational inpainting, which compromise compactness or fidelity. Metalenses composed of subwavelength meta-atoms promise compact imaging, but simultaneous achievement of broadband and obstruction-free imaging remains a challenge, since a metalens that images distant scenes across a broadband spectrum cannot properly defocus near-depth occlusions. Here, we introduce a learned split-spectrum metalens that enables broadband obstruction-free imaging. Our approach divides the spectrum of each RGB channel into pass and stop bands with multi-band spectral filtering and learns the metalens to focus light from far objects through pass bands, while filtering focused near-depth light through stop bands. This optical signal is further enhanced using a neural network. Our learned split-spectrum metalens achieves broadband and obstruction-free imaging with relative PSNR gains of 32.29% and improves object detection and semantic segmentation accuracies with absolute gains of +13.54% mAP, +48.45% IoU, and +20.35% mIoU over a conventional hyperbolic design. This promises robust obstruction-free sensing and vision for space-constrained systems, such as mobile robots, drones, and endoscopes.
Single-view indoor scene generation plays a crucial role in a range of real-world applications. However, generating a complete 360° scene from a single image remains a highly ill-posed and challenging problem. Recent approaches have made progress by leveraging diffusion models and depth estimation networks, yet they still struggle to maintain appearance consistency and geometric plausibility under large viewpoint changes, limiting their effectiveness in full-scene generation. To address this, we propose AnchoredDream, a novel zero-shot pipeline that anchors 360° scene generation on high-fidelity geometry via an appearance-geometry mutual boosting mechanism. Given a single-view image, our method first performs appearance-guided geometry generation to construct a reliable 3D scene layout. Then, we progressively generate the complete scene through a series of modules: warp-and-inpaint, warp-and-refine, post-optimization, and a novel Grouting Block, which ensures seamless transitions between the input view and generated regions. Extensive experiments demonstrate that AnchoredDream outperforms existing methods by a large margin in both appearance consistency and geometric plausibility--all in a zero-shot manner. Our results highlight the potential of geometric grounding for high-quality, zero-shot single-view scene generation.
Precise color control remains a persistent failure mode in text-to-image diffusion systems, particularly in design-oriented workflows where outputs must satisfy explicit, user-specified color targets. We present an inference-time, region-constrained color preservation method that steers a pretrained diffusion model without any additional training. Our approach combines (i) ROI-based inpainting for spatial selectivity, (ii) background-latent re-imposition to prevent color drift outside the ROI, and (iii) latent nudging via gradient guidance using a composite loss defined in CIE Lab and linear RGB. The loss is constructed to control not only the mean ROI color but also the tail of the pixelwise error distribution through CVaR-style and soft-maximum penalties, with a late-start gate and a time-dependent schedule to stabilize guidance across denoising steps. We show that mean-only baselines can satisfy average color constraints while producing perceptually salient local failures, motivating our distribution-aware objective. The resulting method provides a practical, training-free mechanism for targeted color adherence that can be integrated into standard Stable Diffusion inpainting pipelines.
Generative image inpainting can produce realistic, high-fidelity results even with large, irregular masks. However, existing methods still face key issues that make inpainted images look unnatural. In this paper, we identify two main problems: (1) Unwanted object insertion: generative models may hallucinate arbitrary objects in the masked region that do not match the surrounding context. (2) Color inconsistency: inpainted regions often exhibit noticeable color shifts, leading to smeared textures and degraded image quality. We analyze the underlying causes of these issues and propose efficient post-hoc solutions for pre-trained inpainting models. Specifically, we introduce the principled framework of Aligned Stable inpainting with UnKnown Areas prior (ASUKA). To reduce unwanted object insertion, we use reconstruction-based priors to guide the generative model, suppressing hallucinated objects while preserving generative flexibility. To address color inconsistency, we design a specialized VAE decoder that formulates latent-to-image decoding as a local harmonization task. This design significantly reduces color shifts and produces more color-consistent results. We implement ASUKA on two representative inpainting architectures: a U-Net-based model and a DiT-based model. We analyze and propose lightweight injection strategies that minimize interference with the model's original generation capacity while ensuring the mitigation of the two issues. We evaluate ASUKA using the Places2 dataset and MISATO, our proposed diverse benchmark. Experiments show that ASUKA effectively suppresses object hallucination and improves color consistency, outperforming standard diffusion, rectified flow models, and other inpainting methods. Dataset, models and codes will be released in github.
Face swapping aims to transfer the identity of a source face onto a target face while preserving target-specific attributes such as pose, expression, lighting, skin tone, and makeup. However, since real ground truth for face swapping is unavailable, achieving both accurate identity transfer and high-quality attribute preservation remains challenging. In addition, recent diffusion-based approaches attempt to improve visual fidelity through conditional inpainting on masked target images, but the masked condition removes crucial appearance cues of target, resulting in plausible yet misaligned attributes. To address these limitations, we propose APPLE (Attribute-Preserving Pseudo-Labeling), a diffusion-based teacher-student framework that enhances attribute fidelity through attribute-aware pseudo-label supervision. We reformulate face swapping as a conditional deblurring task to more faithfully preserve target-specific attributes such as lighting, skin tone, and makeup. In addition, we introduce an attribute-aware inversion scheme to further improve detailed attribute preservation. Through an elaborate attribute-preserving design for teacher learning, APPLE produces high-quality pseudo triplets that explicitly provide the student with direct face-swapping supervision. Overall, APPLE achieves state-of-the-art performance in terms of attribute preservation and identity transfer, producing more photorealistic and target-faithful results.
Distributed multichannel acoustic sensing (DMAS) enables large-scale sound event classification (SEC), but performance drops when many channels are degraded and when sensor layouts at test time differ from training layouts. We propose a learning-free, physics-informed inpainting frontend based on reverse time migration (RTM). In this approach, observed multichannel spectrograms are first back-propagated on a 3D grid using an analytic Green's function to form a scene-consistent image, and then forward-projected to reconstruct inpainted signals before log-mel feature extraction and Transformer-based classification. We evaluate the method on ESC-50 with 50 sensors and three layouts (circular, linear, right-angle), where per-channel SNRs are sampled from -30 to 0 dB. Compared with an AST baseline, scaling-sparsemax channel selection, and channel-swap augmentation, the proposed RTM frontend achieves the best or competitive accuracy across all layouts, improving accuracy by 13.1 points on the right-angle layout (from 9.7% to 22.8%). Correlation analyses show that spatial weights align more strongly with SNR than with channel--source distance, and that higher SNR--weight correlation corresponds to higher SEC accuracy. These results demonstrate that a reconstruct-then-project, physics-based preprocessing effectively complements learning-only methods for DMAS under layout-open configurations and severe channel degradation.
Hyperspectral image (HSI) restoration is a fundamental challenge in computational imaging and computer vision. It involves ill-posed inverse problems, such as inpainting and super-resolution. Although deep learning methods have transformed the field through data-driven learning, their effectiveness hinges on access to meticulously curated ground-truth datasets. This fundamentally restricts their applicability in real-world scenarios where such data is unavailable. This paper presents SHARE (Single Hyperspectral Image Restoration with Equivariance), a fully unsupervised framework that unifies geometric equivariance principles with low-rank spectral modelling to eliminate the need for ground truth. SHARE's core concept is to exploit the intrinsic invariance of hyperspectral structures under differentiable geometric transformations (e.g. rotations and scaling) to derive self-supervision signals through equivariance consistency constraints. Our novel Dynamic Adaptive Spectral Attention (DASA) module further enhances this paradigm shift by explicitly encoding the global low-rank property of HSI and adaptively refining local spectral-spatial correlations through learnable attention mechanisms. Extensive experiments on HSI inpainting and super-resolution tasks demonstrate the effectiveness of SHARE. Our method outperforms many state-of-the-art unsupervised approaches and achieves performance comparable to that of supervised methods. We hope that our approach will shed new light on HSI restoration and broader scientific imaging scenarios. The code will be released at https://github.com/xuwayyy/SHARE.
Vision In-Context Learning (VICL) enables inpainting models to quickly adapt to new visual tasks from only a few prompts. However, existing methods suffer from two key issues: (1) selecting only the most similar prompt discards complementary cues from other high-quality prompts; and (2) failing to exploit the structured information implied by different prompt arrangements. We propose an end-to-end VICL framework to overcome these limitations. Firstly, an adaptive Fusion Module aggregates critical patterns and annotations from multiple prompts to form more precise contextual prompts. Secondly, we introduce arrangement-specific lightweight MLPs to decouple layout priors from the core model, while minimally affecting the overall model. In addition, an bidirectional fine-tuning mechanism swaps the roles of query and prompt, encouraging the model to reconstruct the original prompt from fused context and thus enhancing collaboration between the fusion module and the inpainting model. Experiments on foreground segmentation, single-object detection, and image colorization demonstrate superior results and strong cross-task generalization of our method.
The development of robust artificial intelligence models for histopathology diagnosis is severely constrained by the scarcity of expert-annotated lesion data, particularly for rare pathologies and underrepresented disease subtypes. While data augmentation offers a potential solution, existing methods fail to generate sufficiently realistic lesion morphologies that preserve the complex spatial relationships and cellular architectures characteristic of histopathological tissues. Here we present PathoGen, a diffusion-based generative model that enables controllable, high-fidelity inpainting of lesions into benign histopathology images. Unlike conventional augmentation techniques, PathoGen leverages the iterative refinement process of diffusion models to synthesize lesions with natural tissue boundaries, preserved cellular structures, and authentic staining characteristics. We validate PathoGen across four diverse datasets representing distinct diagnostic challenges: kidney, skin, breast, and prostate pathology. Quantitative assessment confirms that PathoGen outperforms state-of-the-art generative baselines, including conditional GAN and Stable Diffusion, in image fidelity and distributional similarity. Crucially, we show that augmenting training sets with PathoGen-synthesized lesions enhances downstream segmentation performance compared to traditional geometric augmentations, particularly in data-scarce regimes. Besides, by simultaneously generating realistic morphology and pixel-level ground truth, PathoGen effectively overcomes the manual annotation bottleneck. This approach offers a scalable pathway for developing generalizable medical AI systems despite limited expert-labeled data.