Abstract:Retrieval-Augmented Generation (RAG) enhances large language models (LLMs) by integrating up-to-date external knowledge, yet real-world web environments present unique challenges. These limitations manifest as two key challenges: pervasive misinformation in the web environment, which introduces unreliable or misleading content that can degrade retrieval accuracy, and the underutilization of web tools, which, if effectively employed, could enhance query precision and help mitigate this noise, ultimately improving the retrieval results in RAG systems. To address these issues, we propose WebFilter, a novel RAG framework that generates source-restricted queries and filters out unreliable content. This approach combines a retrieval filtering mechanism with a behavior- and outcome-driven reward strategy, optimizing both query formulation and retrieval outcomes. Extensive experiments demonstrate that WebFilter improves answer quality and retrieval precision, outperforming existing RAG methods on both in-domain and out-of-domain benchmarks.
Abstract:Evaluating the performance of visual language models (VLMs) in graphic reasoning tasks has become an important research topic. However, VLMs still show obvious deficiencies in simulating human-level graphic reasoning capabilities, especially in complex graphic reasoning and abstract problem solving, which are less studied and existing studies only focus on simple graphics. To evaluate the performance of VLMs in complex graphic reasoning, we propose ReasonBench, the first evaluation benchmark focused on structured graphic reasoning tasks, which includes 1,613 questions from real-world intelligence tests. ReasonBench covers reasoning dimensions related to location, attribute, quantity, and multi-element tasks, providing a comprehensive evaluation of the performance of VLMs in spatial, relational, and abstract reasoning capabilities. We benchmark 11 mainstream VLMs (including closed-source and open-source models) and reveal significant limitations of current models. Based on these findings, we propose a dual optimization strategy: Diagrammatic Reasoning Chain (DiaCoT) enhances the interpretability of reasoning by decomposing layers, and ReasonTune enhances the task adaptability of model reasoning through training, all of which improves VLM performance by 33.5\%. All experimental data and code are in the repository: https://huggingface.co/datasets/cistine/ReasonBench.
Abstract:Efficient and high-accuracy 3D occupancy prediction is crucial for ensuring the performance of autonomous driving (AD) systems. However, many current methods focus on high accuracy at the expense of real-time processing needs. To address this challenge of balancing accuracy and inference speed, we propose a directional pure 2D approach. Our method involves slicing 3D voxel features to preserve complete vertical geometric information. This strategy compensates for the loss of height cues in Bird's-Eye View (BEV) representations, thereby maintaining the integrity of the 3D geometric structure. By employing a directional attention mechanism, we efficiently extract geometric features from different orientations, striking a balance between accuracy and computational efficiency. Experimental results highlight the significant advantages of our approach for autonomous driving. On the Occ3D-nuScenes, the proposed method achieves an mIoU of 39.3% and an inference speed of 27.7 FPS, effectively balancing accuracy and efficiency. In simulations on edge devices, the inference speed reaches 14.8 FPS, further demonstrating the method's applicability for real-time deployment in resource-constrained environments.
Abstract:Graph clustering, a classical task in graph learning, involves partitioning the nodes of a graph into distinct clusters. This task has applications in various real-world scenarios, such as anomaly detection, social network analysis, and community discovery. Current graph clustering methods commonly rely on module pre-training to obtain a reliable prior distribution for the model, which is then used as the optimization objective. However, these methods often overlook deeper supervised signals, leading to sub-optimal reliability of the prior distribution. To address this issue, we propose a novel deep graph clustering method called CGCN. Our approach introduces contrastive signals and deep structural information into the pre-training process. Specifically, CGCN utilizes a contrastive learning mechanism to foster information interoperability among multiple modules and allows the model to adaptively adjust the degree of information aggregation for different order structures. Our CGCN method has been experimentally validated on multiple real-world graph datasets, showcasing its ability to boost the dependability of prior clustering distributions acquired through pre-training. As a result, we observed notable enhancements in the performance of the model.
Abstract:The development of 2D foundation models for image segmentation has been significantly advanced by the Segment Anything Model (SAM). However, achieving similar success in 3D models remains a challenge due to issues such as non-unified data formats, lightweight models, and the scarcity of labeled data with diverse masks. To this end, we propose a 3D promptable segmentation model (Point-SAM) focusing on point clouds. Our approach utilizes a transformer-based method, extending SAM to the 3D domain. We leverage part-level and object-level annotations and introduce a data engine to generate pseudo labels from SAM, thereby distilling 2D knowledge into our 3D model. Our model outperforms state-of-the-art models on several indoor and outdoor benchmarks and demonstrates a variety of applications, such as 3D annotation. Codes and demo can be found at https://github.com/zyc00/Point-SAM.
Abstract:Most existing attention prediction research focuses on salient instances like humans and objects. However, the more complex interaction-oriented attention, arising from the comprehension of interactions between instances by human observers, remains largely unexplored. This is equally crucial for advancing human-machine interaction and human-centered artificial intelligence. To bridge this gap, we first collect a novel gaze fixation dataset named IG, comprising 530,000 fixation points across 740 diverse interaction categories, capturing visual attention during human observers cognitive processes of interactions. Subsequently, we introduce the zero-shot interaction-oriented attention prediction task ZeroIA, which challenges models to predict visual cues for interactions not encountered during training. Thirdly, we present the Interactive Attention model IA, designed to emulate human observers cognitive processes to tackle the ZeroIA problem. Extensive experiments demonstrate that the proposed IA outperforms other state-of-the-art approaches in both ZeroIA and fully supervised settings. Lastly, we endeavor to apply interaction-oriented attention to the interaction recognition task itself. Further experimental results demonstrate the promising potential to enhance the performance and interpretability of existing state-of-the-art HOI models by incorporating real human attention data from IG and attention labels generated by IA.
Abstract:Many clinical tasks require an understanding of specialized data, such as medical images and genomics, which is not typically found in general-purpose large multimodal models. Building upon Gemini's multimodal models, we develop several models within the new Med-Gemini family that inherit core capabilities of Gemini and are optimized for medical use via fine-tuning with 2D and 3D radiology, histopathology, ophthalmology, dermatology and genomic data. Med-Gemini-2D sets a new standard for AI-based chest X-ray (CXR) report generation based on expert evaluation, exceeding previous best results across two separate datasets by an absolute margin of 1% and 12%, where 57% and 96% of AI reports on normal cases, and 43% and 65% on abnormal cases, are evaluated as "equivalent or better" than the original radiologists' reports. We demonstrate the first ever large multimodal model-based report generation for 3D computed tomography (CT) volumes using Med-Gemini-3D, with 53% of AI reports considered clinically acceptable, although additional research is needed to meet expert radiologist reporting quality. Beyond report generation, Med-Gemini-2D surpasses the previous best performance in CXR visual question answering (VQA) and performs well in CXR classification and radiology VQA, exceeding SoTA or baselines on 17 of 20 tasks. In histopathology, ophthalmology, and dermatology image classification, Med-Gemini-2D surpasses baselines across 18 out of 20 tasks and approaches task-specific model performance. Beyond imaging, Med-Gemini-Polygenic outperforms the standard linear polygenic risk score-based approach for disease risk prediction and generalizes to genetically correlated diseases for which it has never been trained. Although further development and evaluation are necessary in the safety-critical medical domain, our results highlight the potential of Med-Gemini across a wide range of medical tasks.
Abstract:Binary code representation learning has shown significant performance in binary analysis tasks. But existing solutions often have poor transferability, particularly in few-shot and zero-shot scenarios where few or no training samples are available for the tasks. To address this problem, we present CLAP (Contrastive Language-Assembly Pre-training), which employs natural language supervision to learn better representations of binary code (i.e., assembly code) and get better transferability. At the core, our approach boosts superior transfer learning capabilities by effectively aligning binary code with their semantics explanations (in natural language), resulting a model able to generate better embeddings for binary code. To enable this alignment training, we then propose an efficient dataset engine that could automatically generate a large and diverse dataset comprising of binary code and corresponding natural language explanations. We have generated 195 million pairs of binary code and explanations and trained a prototype of CLAP. The evaluations of CLAP across various downstream tasks in binary analysis all demonstrate exceptional performance. Notably, without any task-specific training, CLAP is often competitive with a fully supervised baseline, showing excellent transferability. We release our pre-trained model and code at https://github.com/Hustcw/CLAP.
Abstract:Open-world 3D part segmentation is pivotal in diverse applications such as robotics and AR/VR. Traditional supervised methods often grapple with limited 3D data availability and struggle to generalize to unseen object categories. PartSLIP, a recent advancement, has made significant strides in zero- and few-shot 3D part segmentation. This is achieved by harnessing the capabilities of the 2D open-vocabulary detection module, GLIP, and introducing a heuristic method for converting and lifting multi-view 2D bounding box predictions into 3D segmentation masks. In this paper, we introduce PartSLIP++, an enhanced version designed to overcome the limitations of its predecessor. Our approach incorporates two major improvements. First, we utilize a pre-trained 2D segmentation model, SAM, to produce pixel-wise 2D segmentations, yielding more precise and accurate annotations than the 2D bounding boxes used in PartSLIP. Second, PartSLIP++ replaces the heuristic 3D conversion process with an innovative modified Expectation-Maximization algorithm. This algorithm conceptualizes 3D instance segmentation as unobserved latent variables, and then iteratively refines them through an alternating process of 2D-3D matching and optimization with gradient descent. Through extensive evaluations, we show that PartSLIP++ demonstrates better performance over PartSLIP in both low-shot 3D semantic and instance-based object part segmentation tasks. Code released at https://github.com/zyc00/PartSLIP2.
Abstract:As software becomes increasingly complex and prone to vulnerabilities, automated vulnerability detection is critically important, yet challenging. Given the significant successes of Large Language Models (LLMs) in various tasks, there is growing anticipation of their efficacy in vulnerability detection. However, a quantitative understanding of their potential in vulnerability detection is still missing. To bridge this gap, we introduce a comprehensive vulnerability benchmark VulBench. This benchmark aggregates high-quality data from a wide range of CTF (Capture-the-Flag) challenges and real-world applications, with annotations for each vulnerable function detailing the vulnerability type and its root cause. Through our experiments encompassing 16 LLMs and 6 state-of-the-art (SOTA) deep learning-based models and static analyzers, we find that several LLMs outperform traditional deep learning approaches in vulnerability detection, revealing an untapped potential in LLMs. This work contributes to the understanding and utilization of LLMs for enhanced software security.