Fudan University
Abstract:This paper addresses the problem of category-level pose estimation for articulated objects in robotic manipulation tasks. Recent works have shown promising results in estimating part pose and size at the category level. However, these approaches primarily follow a complex multi-stage pipeline that first segments part instances in the point cloud and then estimates the Normalized Part Coordinate Space (NPCS) representation for 6D poses. These approaches suffer from high computational costs and low performance in real-time robotic tasks. To address these limitations, we propose YOEO, a single-stage method that simultaneously outputs instance segmentation and NPCS representations in an end-to-end manner. We use a unified network to generate point-wise semantic labels and centroid offsets, allowing points from the same part instance to vote for the same centroid. We further utilize a clustering algorithm to distinguish points based on their estimated centroid distances. Finally, we first separate the NPCS region of each instance. Then, we align the separated regions with the real point cloud to recover the final pose and size. Experimental results on the GAPart dataset demonstrate the pose estimation capabilities of our proposed single-shot method. We also deploy our synthetically-trained model in a real-world setting, providing real-time visual feedback at 200Hz, enabling a physical Kinova robot to interact with unseen articulated objects. This showcases the utility and effectiveness of our proposed method.
Abstract:Humans can decompose Chinese characters into compositional components and recombine them to recognize unseen characters. This reflects two cognitive principles: Compositionality, the idea that complex concepts are built on simpler parts; and Learning-to-learn, the ability to learn strategies for decomposing and recombining components to form new concepts. These principles provide inductive biases that support efficient generalization. They are critical to Chinese character recognition (CCR) in solving the zero-shot problem, which results from the common long-tail distribution of Chinese character datasets. Existing methods have made substantial progress in modeling compositionality via predefined radical or stroke decomposition. However, they often ignore the learning-to-learn capability, limiting their ability to generalize beyond human-defined schemes. Inspired by these principles, we propose a deep latent variable model that learns Compositional Latent components of Chinese characters (CoLa) without relying on human-defined decomposition schemes. Recognition and matching can be performed by comparing compositional latent components in the latent space, enabling zero-shot character recognition. The experiments illustrate that CoLa outperforms previous methods in both character the radical zero-shot CCR. Visualization indicates that the learned components can reflect the structure of characters in an interpretable way. Moreover, despite being trained on historical documents, CoLa can analyze components of oracle bone characters, highlighting its cross-dataset generalization ability.
Abstract:We introduce ELA-ZSON, an efficient layout-aware zero-shot object navigation (ZSON) approach designed for complex multi-room indoor environments. By planning hierarchically leveraging a global topologigal map with layout information and local imperative approach with detailed scene representation memory, ELA-ZSON achieves both efficient and effective navigation. The process is managed by an LLM-powered agent, ensuring seamless effective planning and navigation, without the need for human interaction, complex rewards, or costly training. Our experimental results on the MP3D benchmark achieves 85\% object navigation success rate (SR) and 79\% success rate weighted by path length (SPL) (over 40\% point improvement in SR and 60\% improvement in SPL compared to exsisting methods). Furthermore, we validate the robustness of our approach through virtual agent and real-world robotic deployment, showcasing its capability in practical scenarios. See https://anonymous.4open.science/r/ELA-ZSON-C67E/ for details.
Abstract:Camera and human motion controls have been extensively studied for video generation, but existing approaches typically address them separately, suffering from limited data with high-quality annotations for both aspects. To overcome this, we present Uni3C, a unified 3D-enhanced framework for precise control of both camera and human motion in video generation. Uni3C includes two key contributions. First, we propose a plug-and-play control module trained with a frozen video generative backbone, PCDController, which utilizes unprojected point clouds from monocular depth to achieve accurate camera control. By leveraging the strong 3D priors of point clouds and the powerful capacities of video foundational models, PCDController shows impressive generalization, performing well regardless of whether the inference backbone is frozen or fine-tuned. This flexibility enables different modules of Uni3C to be trained in specific domains, i.e., either camera control or human motion control, reducing the dependency on jointly annotated data. Second, we propose a jointly aligned 3D world guidance for the inference phase that seamlessly integrates both scenic point clouds and SMPL-X characters to unify the control signals for camera and human motion, respectively. Extensive experiments confirm that PCDController enjoys strong robustness in driving camera motion for fine-tuned backbones of video generation. Uni3C substantially outperforms competitors in both camera controllability and human motion quality. Additionally, we collect tailored validation sets featuring challenging camera movements and human actions to validate the effectiveness of our method.
Abstract:This paper tackles category-level pose estimation of articulated objects in robotic manipulation tasks and introduces a new benchmark dataset. While recent methods estimate part poses and sizes at the category level, they often rely on geometric cues and complex multi-stage pipelines that first segment parts from the point cloud, followed by Normalized Part Coordinate Space (NPCS) estimation for 6D poses. These approaches overlook dense semantic cues from RGB images, leading to suboptimal accuracy, particularly for objects with small parts. To address these limitations, we propose a single-stage Network, CAP-Net, for estimating the 6D poses and sizes of Categorical Articulated Parts. This method combines RGB-D features to generate instance segmentation and NPCS representations for each part in an end-to-end manner. CAP-Net uses a unified network to simultaneously predict point-wise class labels, centroid offsets, and NPCS maps. A clustering algorithm then groups points of the same predicted class based on their estimated centroid distances to isolate each part. Finally, the NPCS region of each part is aligned with the point cloud to recover its final pose and size. To bridge the sim-to-real domain gap, we introduce the RGBD-Art dataset, the largest RGB-D articulated dataset to date, featuring photorealistic RGB images and depth noise simulated from real sensors. Experimental evaluations on the RGBD-Art dataset demonstrate that our method significantly outperforms the state-of-the-art approach. Real-world deployments of our model in robotic tasks underscore its robustness and exceptional sim-to-real transfer capabilities, confirming its substantial practical utility. Our dataset, code and pre-trained models are available on the project page.
Abstract:Decoding visual experiences from brain activity is a significant challenge. Existing fMRI-to-video methods often focus on semantic content while overlooking spatial and motion information. However, these aspects are all essential and are processed through distinct pathways in the brain. Motivated by this, we propose DecoFuse, a novel brain-inspired framework for decoding videos from fMRI signals. It first decomposes the video into three components - semantic, spatial, and motion - then decodes each component separately before fusing them to reconstruct the video. This approach not only simplifies the complex task of video decoding by decomposing it into manageable sub-tasks, but also establishes a clearer connection between learned representations and their biological counterpart, as supported by ablation studies. Further, our experiments show significant improvements over previous state-of-the-art methods, achieving 82.4% accuracy for semantic classification, 70.6% accuracy in spatial consistency, a 0.212 cosine similarity for motion prediction, and 21.9% 50-way accuracy for video generation. Additionally, neural encoding analyses for semantic and spatial information align with the two-streams hypothesis, further validating the distinct roles of the ventral and dorsal pathways. Overall, DecoFuse provides a strong and biologically plausible framework for fMRI-to-video decoding. Project page: https://chongjg.github.io/DecoFuse/.
Abstract:Open-vocabulary 3D visual grounding and reasoning aim to localize objects in a scene based on implicit language descriptions, even when they are occluded. This ability is crucial for tasks such as vision-language navigation and autonomous robotics. However, current methods struggle because they rely heavily on fine-tuning with 3D annotations and mask proposals, which limits their ability to handle diverse semantics and common knowledge required for effective reasoning. In this work, we propose ReasonGrounder, an LVLM-guided framework that uses hierarchical 3D feature Gaussian fields for adaptive grouping based on physical scale, enabling open-vocabulary 3D grounding and reasoning. ReasonGrounder interprets implicit instructions using large vision-language models (LVLM) and localizes occluded objects through 3D Gaussian splatting. By incorporating 2D segmentation masks from the SAM and multi-view CLIP embeddings, ReasonGrounder selects Gaussian groups based on object scale, enabling accurate localization through both explicit and implicit language understanding, even in novel, occluded views. We also contribute ReasoningGD, a new dataset containing over 10K scenes and 2 million annotations for evaluating open-vocabulary 3D grounding and amodal perception under occlusion. Experiments show that ReasonGrounder significantly improves 3D grounding accuracy in real-world scenarios.
Abstract:Generating emotion-specific talking head videos from audio input is an important and complex challenge for human-machine interaction. However, emotion is highly abstract concept with ambiguous boundaries, and it necessitates disentangled expression parameters to generate emotionally expressive talking head videos. In this work, we present EmoHead to synthesize talking head videos via semantic expression parameters. To predict expression parameter for arbitrary audio input, we apply an audio-expression module that can be specified by an emotion tag. This module aims to enhance correlation from audio input across various emotions. Furthermore, we leverage pre-trained hyperplane to refine facial movements by probing along the vertical direction. Finally, the refined expression parameters regularize neural radiance fields and facilitate the emotion-consistent generation of talking head videos. Experimental results demonstrate that semantic expression parameters lead to better reconstruction quality and controllability.
Abstract:Person re-identification (Re-ID) is a critical task in human-centric intelligent systems, enabling consistent identification of individuals across different camera views using multi-modal query information. Recent studies have successfully integrated LVLMs with person Re-ID, yielding promising results. However, existing LVLM-based methods face several limitations. They rely on extracting textual embeddings from fixed templates, which are used either as intermediate features for image representation or for prompt tuning in domain-specific tasks. Furthermore, they are unable to adopt the VQA inference format, significantly restricting their broader applicability. In this paper, we propose a novel, versatile, one-for-all person Re-ID framework, ChatReID. Our approach introduces a Hierarchical Progressive Tuning (HPT) strategy, which ensures fine-grained identity-level retrieval by progressively refining the model's ability to distinguish pedestrian identities. Extensive experiments demonstrate that our approach outperforms SOTA methods across ten benchmarks in four different Re-ID settings, offering enhanced flexibility and user-friendliness. ChatReID provides a scalable, practical solution for real-world person Re-ID applications, enabling effective multi-modal interaction and fine-grained identity discrimination.
Abstract:As the demand for high-resolution image processing in Large Vision-Language Models (LVLMs) grows, sub-image partitioning has become a popular approach for mitigating visual information loss associated with fixed-resolution processing. However, existing partitioning methods uniformly process sub-images, resulting in suboptimal image understanding. In this work, we reveal that the sub-images with higher semantic relevance to the entire image encapsulate richer visual information for preserving the model's visual understanding ability. Therefore, we propose the Global Semantic-guided Weight Allocator (GSWA) module, which dynamically allocates weights to sub-images based on their relative information density, emulating human visual attention mechanisms. This approach enables the model to focus on more informative regions, overcoming the limitations of uniform treatment. We integrate GSWA into the InternVL2-2B framework to create SleighVL, a lightweight yet high-performing model. Extensive experiments demonstrate that SleighVL outperforms models with comparable parameters and remains competitive with larger models. Our work provides a promising direction for more efficient and contextually aware high-resolution image processing in LVLMs, advancing multimodal system development.