Abstract:Text-to-image (T2I) models such as Stable Diffusion have advanced rapidly and are now widely used in content creation. However, these models can be misused to generate harmful content, including nudity or violence, posing significant safety risks. While most platforms employ content moderation systems, underlying vulnerabilities can still be exploited by determined adversaries. Recent research on red-teaming and adversarial attacks against T2I models has notable limitations: some studies successfully generate highly toxic images but use adversarial prompts that are easily detected and blocked by safety filters, while others focus on bypassing safety mechanisms but fail to produce genuinely harmful outputs, neglecting the discovery of truly high-risk prompts. Consequently, there remains a lack of reliable tools for evaluating the safety of defended T2I models. To address this gap, we propose GenBreak, a framework that fine-tunes a red-team large language model (LLM) to systematically explore underlying vulnerabilities in T2I generators. Our approach combines supervised fine-tuning on curated datasets with reinforcement learning via interaction with a surrogate T2I model. By integrating multiple reward signals, we guide the LLM to craft adversarial prompts that enhance both evasion capability and image toxicity, while maintaining semantic coherence and diversity. These prompts demonstrate strong effectiveness in black-box attacks against commercial T2I generators, revealing practical and concerning safety weaknesses.
Abstract:Large Vision-Language Models (VLMs) have achieved remarkable success in understanding complex real-world scenarios and supporting data-driven decision-making processes. However, VLMs exhibit significant vulnerability against adversarial examples, either text or image, which can lead to various adversarial outcomes, e.g., jailbreaking, hijacking, and hallucination, etc. In this work, we empirically and theoretically demonstrate that VLMs are particularly susceptible to image-based adversarial examples, where imperceptible perturbations can precisely manipulate each output token. To this end, we propose a novel attack called Vision-language model Manipulation Attack (VMA), which integrates first-order and second-order momentum optimization techniques with a differentiable transformation mechanism to effectively optimize the adversarial perturbation. Notably, VMA can be a double-edged sword: it can be leveraged to implement various attacks, such as jailbreaking, hijacking, privacy breaches, Denial-of-Service, and the generation of sponge examples, etc, while simultaneously enabling the injection of watermarks for copyright protection. Extensive empirical evaluations substantiate the efficacy and generalizability of VMA across diverse scenarios and datasets.
Abstract:The rapid advancement of large Vision-Language Models (VLMs) has raised significant safety concerns, particularly regarding their vulnerability to jailbreak attacks. While existing research primarily focuses on VLMs' susceptibility to harmful instructions, this work identifies a critical yet overlooked vulnerability: current alignment mechanisms often fail to address the risks posed by toxic text continuation tasks. To investigate this issue, we propose a novel Red Team Diffuser (RTD) framework, which leverages reinforcement learning to generate red team images that effectively induce highly toxic continuations from target black-box VLMs. The RTD pipeline begins with a greedy search for high-quality image prompts that maximize the toxicity of VLM-generated sentence continuations, guided by a Large Language Model (LLM). These prompts are then used as input for the reinforcement fine-tuning of a diffusion model, which employs toxicity and alignment rewards to further amplify harmful outputs. Experimental results demonstrate the effectiveness of RTD, increasing the toxicity rate of LLaVA outputs by 10.69% on the original attack set and 8.91% on a hold-out set. Moreover, RTD exhibits strong cross-model transferability, raising the toxicity rate by 5.1% on Gemini and 26.83% on LLaMA. These findings reveal significant deficiencies in existing alignment strategies, particularly their inability to prevent harmful continuations. Our work underscores the urgent need for more robust and adaptive alignment mechanisms to ensure the safe deployment of VLMs in real-world applications.
Abstract:Transfer-based attacks pose a significant threat to real-world applications by directly targeting victim models with adversarial examples generated on surrogate models. While numerous approaches have been proposed to enhance adversarial transferability, existing works often overlook the intrinsic relationship between adversarial perturbations and input images. In this work, we find that adversarial perturbation often exhibits poor translation invariance for a given clean image and model, which is attributed to local invariance. Through empirical analysis, we demonstrate that there is a positive correlation between the local invariance of adversarial perturbations w.r.t. the input image and their transferability across different models. Based on this finding, we propose a general adversarial transferability boosting technique called Local Invariance Boosting approach (LI-Boost). Extensive experiments on the standard ImageNet dataset demonstrate that LI-Boost could significantly boost various types of transfer-based attacks (e.g., gradient-based, input transformation-based, model-related, advanced objective function, ensemble, etc.) on CNNs, ViTs, and defense mechanisms. Our approach presents a promising direction for future research in improving adversarial transferability across different models.
Abstract:Physical adversarial patches printed on clothing can easily allow individuals to evade person detectors. However, most existing adversarial patch generation methods prioritize attack effectiveness over stealthiness, resulting in patches that are aesthetically unpleasing. Although existing methods using generative adversarial networks or diffusion models can produce more natural-looking patches, they often struggle to balance stealthiness with attack effectiveness and lack flexibility for user customization. To address these challenges, we propose a novel diffusion-based customizable patch generation framework termed DiffPatch, specifically tailored for creating naturalistic and customizable adversarial patches. Our approach enables users to utilize a reference image as the source, rather than starting from random noise, and incorporates masks to craft naturalistic patches of various shapes, not limited to squares. To prevent the original semantics from being lost during the diffusion process, we employ Null-text inversion to map random noise samples to a single input image and generate patches through Incomplete Diffusion Optimization (IDO). Notably, while maintaining a natural appearance, our method achieves a comparable attack performance to state-of-the-art non-naturalistic patches when using similarly sized attacks. Using DiffPatch, we have created a physical adversarial T-shirt dataset, AdvPatch-1K, specifically targeting YOLOv5s. This dataset includes over a thousand images across diverse scenarios, validating the effectiveness of our attack in real-world environments. Moreover, it provides a valuable resource for future research.
Abstract:Deep neural networks are widely known to be vulnerable to adversarial examples. However, vanilla adversarial examples generated under the white-box setting often exhibit low transferability across different models. Since adversarial transferability poses more severe threats to practical applications, various approaches have been proposed for better transferability, including gradient-based, input transformation-based, and model-related attacks, \etc. In this work, we find that several tiny changes in the existing adversarial attacks can significantly affect the attack performance, \eg, the number of iterations and step size. Based on careful studies of existing adversarial attacks, we propose a bag of tricks to enhance adversarial transferability, including momentum initialization, scheduled step size, dual example, spectral-based input transformation, and several ensemble strategies. Extensive experiments on the ImageNet dataset validate the high effectiveness of our proposed tricks and show that combining them can further boost adversarial transferability. Our work provides practical insights and techniques to enhance adversarial transferability, and offers guidance to improve the attack performance on the real-world application through simple adjustments.
Abstract:Deep neural networks (DNNs) are vulnerable to various types of adversarial examples, bringing huge threats to security-critical applications. Among these, adversarial patches have drawn increasing attention due to their good applicability to fool DNNs in the physical world. However, existing works often generate patches with meaningless noise or patterns, making it conspicuous to humans. To address this issue, we explore how to generate visually realistic adversarial patches to fool DNNs. Firstly, we analyze that a high-quality adversarial patch should be realistic, position irrelevant, and printable to be deployed in the physical world. Based on this analysis, we propose an effective attack called VRAP, to generate visually realistic adversarial patches. Specifically, VRAP constrains the patch in the neighborhood of a real image to ensure the visual reality, optimizes the patch at the poorest position for position irrelevance, and adopts Total Variance loss as well as gamma transformation to make the generated patch printable without losing information. Empirical evaluations on the ImageNet dataset demonstrate that the proposed VRAP exhibits outstanding attack performance in the digital world. Moreover, the generated adversarial patches can be disguised as the scrawl or logo in the physical world to fool the deep models without being detected, bringing significant threats to DNNs-enabled applications.
Abstract:In recent years, Text-to-Image (T2I) models have seen remarkable advancements, gaining widespread adoption. However, this progress has inadvertently opened avenues for potential misuse, particularly in generating inappropriate or Not-Safe-For-Work (NSFW) content. Our work introduces MMA-Diffusion, a framework that presents a significant and realistic threat to the security of T2I models by effectively circumventing current defensive measures in both open-source models and commercial online services. Unlike previous approaches, MMA-Diffusion leverages both textual and visual modalities to bypass safeguards like prompt filters and post-hoc safety checkers, thus exposing and highlighting the vulnerabilities in existing defense mechanisms.
Abstract:Mixup augmentation has been widely integrated to generate adversarial examples with superior adversarial transferability when immigrating from a surrogate model to other models. However, the underlying mechanism influencing the mixup's effect on transferability remains unexplored. In this work, we posit that the adversarial examples located at the convergence of decision boundaries across various categories exhibit better transferability and identify that Admix tends to steer the adversarial examples towards such regions. However, we find the constraint on the added image in Admix decays its capability, resulting in limited transferability. To address such an issue, we propose a new input transformation-based attack called Mixing the Image but Separating the gradienT (MIST). Specifically, MIST randomly mixes the input image with a randomly shifted image and separates the gradient of each loss item for each mixed image. To counteract the imprecise gradient, MIST calculates the gradient on several mixed images for each input sample. Extensive experimental results on the ImageNet dataset demonstrate that MIST outperforms existing SOTA input transformation-based attacks with a clear margin on both Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) w/wo defense mechanisms, supporting MIST's high effectiveness and generality.
Abstract:Given the severe vulnerability of Deep Neural Networks (DNNs) against adversarial examples, there is an urgent need for an effective adversarial attack to identify the deficiencies of DNNs in security-sensitive applications. As one of the prevalent black-box adversarial attacks, the existing transfer-based attacks still cannot achieve comparable performance with the white-box attacks. Among these, input transformation based attacks have shown remarkable effectiveness in boosting transferability. In this work, we find that the existing input transformation based attacks transform the input image globally, resulting in limited diversity of the transformed images. We postulate that the more diverse transformed images result in better transferability. Thus, we investigate how to locally apply various transformations onto the input image to improve such diversity while preserving the structure of image. To this end, we propose a novel input transformation based attack, called Structure Invariant Attack (SIA), which applies a random image transformation onto each image block to craft a set of diverse images for gradient calculation. Extensive experiments on the standard ImageNet dataset demonstrate that SIA exhibits much better transferability than the existing SOTA input transformation based attacks on CNN-based and transformer-based models, showing its generality and superiority in boosting transferability. Code is available at https://github.com/xiaosen-wang/SIT.