Abstract:With the rapid proliferation of image generative models, the authenticity of digital images has become a significant concern. While existing studies have proposed various methods for detecting AI-generated content, current benchmarks are limited in their coverage of diverse generative models and image categories, often overlooking end-to-end image editing and artistic images. To address these limitations, we introduce UniAIDet, a unified and comprehensive benchmark that includes both photographic and artistic images. UniAIDet covers a wide range of generative models, including text-to-image, image-to-image, image inpainting, image editing, and deepfake models. Using UniAIDet, we conduct a comprehensive evaluation of various detection methods and answer three key research questions regarding generalization capability and the relation between detection and localization. Our benchmark and analysis provide a robust foundation for future research.
Abstract:Text-to-image models are known to struggle with generating images that perfectly align with textual prompts. Several previous studies have focused on evaluating image-text alignment in text-to-image generation. However, these evaluations either address overly simple scenarios, especially overlooking the difficulty of prompts with multiple different instances belonging to the same category, or they introduce metrics that do not correlate well with human evaluation. In this study, we introduce M$^3$T2IBench, a large-scale, multi-category, multi-instance, multi-relation along with an object-detection-based evaluation metric, $AlignScore$, which aligns closely with human evaluation. Our findings reveal that current open-source text-to-image models perform poorly on this challenging benchmark. Additionally, we propose the Revise-Then-Enforce approach to enhance image-text alignment. This training-free post-editing method demonstrates improvements in image-text alignment across a broad range of diffusion models. \footnote{Our code and data has been released in supplementary material and will be made publicly available after the paper is accepted.}
Abstract:The increasing reliance on natural language generation (NLG) models, particularly large language models, has raised concerns about the reliability and accuracy of their outputs. A key challenge is hallucination, where models produce plausible but incorrect information. As a result, hallucination detection has become a critical task. In this work, we introduce a comprehensive hallucination taxonomy with 11 categories across various NLG tasks and propose the HAllucination Detection (HAD) models https://github.com/pku0xff/HAD, which integrate hallucination detection, span-level identification, and correction into a single inference process. Trained on an elaborate synthetic dataset of about 90K samples, our HAD models are versatile and can be applied to various NLG tasks. We also carefully annotate a test set for hallucination detection, called HADTest, which contains 2,248 samples. Evaluations on in-domain and out-of-domain test sets show that our HAD models generally outperform the existing baselines, achieving state-of-the-art results on HaluEval, FactCHD, and FaithBench, confirming their robustness and versatility.
Abstract:Current large language models (LLMs) often suffer from hallucination issues, i,e, generating content that appears factual but is actually unreliable. A typical hallucination detection pipeline involves response decomposition (i.e., claim extraction), query generation, evidence collection (i.e., search or retrieval), and claim verification. However, existing methods exhibit limitations in the first two stages, such as context loss during claim extraction and low specificity in query generation, resulting in degraded performance across the hallucination detection pipeline. In this work, we introduce JointCQ https://github.com/pku0xff/JointCQ, a joint claim-and-query generation framework designed to construct an effective and efficient claim-query generator. Our framework leverages elaborately designed evaluation criteria to filter synthesized training data, and finetunes a language model for joint claim extraction and query generation, providing reliable and informative inputs for downstream search and verification. Experimental results demonstrate that our method outperforms previous methods on multiple open-domain QA hallucination detection benchmarks, advancing the goal of more trustworthy and transparent language model systems.




Abstract:Grammatical error correction is a significant task in NLP. Traditional methods based on encoder-decoder models have achieved certain success, but the application of LLMs in this field is still underexplored. Current research predominantly relies on supervised fine-tuning to train LLMs to directly generate the corrected sentence, which limits the model's powerful reasoning ability. To address this limitation, we propose a novel framework based on Rule-Based RL. Through experiments on the Chinese datasets, our Rule-Based RL framework achieves \textbf{state-of-the-art }performance, with a notable increase in \textbf{recall}. This result clearly highlights the advantages of using RL to steer LLMs, offering a more controllable and reliable paradigm for future development in GEC.
Abstract:Large language models (LLMs) have achieved remarkable success in various tasks, yet they remain vulnerable to faithfulness hallucinations, where the output does not align with the input. In this study, we investigate whether social bias contributes to these hallucinations, a causal relationship that has not been explored. A key challenge is controlling confounders within the context, which complicates the isolation of causality between bias states and hallucinations. To address this, we utilize the Structural Causal Model (SCM) to establish and validate the causality and design bias interventions to control confounders. In addition, we develop the Bias Intervention Dataset (BID), which includes various social biases, enabling precise measurement of causal effects. Experiments on mainstream LLMs reveal that biases are significant causes of faithfulness hallucinations, and the effect of each bias state differs in direction. We further analyze the scope of these causal effects across various models, specifically focusing on unfairness hallucinations, which are primarily targeted by social bias, revealing the subtle yet significant causal effect of bias on hallucination generation.
Abstract:Large language models (LLMs) excel at various natural language processing tasks, but their tendency to generate hallucinations undermines their reliability. Existing hallucination detection methods leveraging hidden states predominantly focus on static and isolated representations, overlooking their dynamic evolution across layers, which limits efficacy. To address this limitation, we shift the focus to the hidden state update process and introduce a novel metric, the ICR Score (Information Contribution to Residual Stream), which quantifies the contribution of modules to the hidden states' update. We empirically validate that the ICR Score is effective and reliable in distinguishing hallucinations. Building on these insights, we propose a hallucination detection method, the ICR Probe, which captures the cross-layer evolution of hidden states. Experimental results show that the ICR Probe achieves superior performance with significantly fewer parameters. Furthermore, ablation studies and case analyses offer deeper insights into the underlying mechanism of this method, improving its interpretability.
Abstract:We introduce LEDOM, the first purely reverse language model, trained autoregressively on 435B tokens with 2B and 7B parameter variants, which processes sequences in reverse temporal order through previous token prediction. For the first time, we present the reverse language model as a potential foundational model across general tasks, accompanied by a set of intriguing examples and insights. Based on LEDOM, we further introduce a novel application: Reverse Reward, where LEDOM-guided reranking of forward language model outputs leads to substantial performance improvements on mathematical reasoning tasks. This approach leverages LEDOM's unique backward reasoning capability to refine generation quality through posterior evaluation. Our findings suggest that LEDOM exhibits unique characteristics with broad application potential. We will release all models, training code, and pre-training data to facilitate future research.
Abstract:With the rapid development of text-to-vision generation diffusion models, classifier-free guidance has emerged as the most prevalent method for conditioning. However, this approach inherently requires twice as many steps for model forwarding compared to unconditional generation, resulting in significantly higher costs. While previous study has introduced the concept of adaptive guidance, it lacks solid analysis and empirical results, making previous method unable to be applied to general diffusion models. In this work, we present another perspective of applying adaptive guidance and propose Step AG, which is a simple, universally applicable adaptive guidance strategy. Our evaluations focus on both image quality and image-text alignment. whose results indicate that restricting classifier-free guidance to the first several denoising steps is sufficient for generating high-quality, well-conditioned images, achieving an average speedup of 20% to 30%. Such improvement is consistent across different settings such as inference steps, and various models including video generation models, highlighting the superiority of our method.
Abstract:Text-to-image models often struggle to generate images that precisely match textual prompts. Prior research has extensively studied the evaluation of image-text alignment in text-to-image generation. However, existing evaluations primarily focus on agreement with human assessments, neglecting other critical properties of a trustworthy evaluation framework. In this work, we first identify two key aspects that a reliable evaluation should address. We then empirically demonstrate that current mainstream evaluation frameworks fail to fully satisfy these properties across a diverse range of metrics and models. Finally, we propose recommendations for improving image-text alignment evaluation.