Dense video captioning is the process of generating textual descriptions for multiple events in a video.
Multimodal video captioning condenses dense footage into a structured format of keyframes and natural language. By creating a cohesive multimodal summary, this approach anchors generative AI in rich semantic evidence and serves as a lightweight proxy for high-efficiency retrieval. However, traditional metrics like BLEU or ROUGE fail to quantify information coverage across disparate modalities, such as comparing a paragraph of text to a sequence of keyframes. To address this, we propose the Video Summary Information Loss (ViSIL) score, an information-theoretic framework that quantifies the video information not captured by a summary via vision-language model (VLM) inference. By measuring the information loss, ViSIL is a unified metric that enables direct comparison across multimodal summary formats despite their structural discrepancies. Our results demonstrate that ViSIL scores show a statistically significant correlation with both human and VLM performance on Video Question Answering (VQA) tasks. ViSIL also enables summary selection to optimize the trade-off between information loss and processing speed, establishing a Pareto-optimal frontier that outperforms text summaries by $7\%$ in VQA accuracy without increasing processing load.
Dense video captioning aims to interpret and describe all temporally localized events throughout an input video. Recent state-of-the-art methods leverage large language models (LLMs) to provide detailed moment descriptions for video data. However, existing VideoLLMs remain challenging in identifying precise event boundaries in untrimmed videos, causing the generated captions to be not properly grounded. In this paper, we propose TA-Prompting, which enhances VideoLLMs via Temporal Anchors that learn to precisely localize events and prompt the VideoLLMs to perform temporal-aware video event understanding. During inference, in order to properly determine the output caption sequence from an arbitrary number of events presented within a video, we introduce an event coherent sampling strategy to select event captions with sufficient coherence across temporal events and cross-modal similarity with the given video. Through extensive experiments on benchmark datasets, we show that our TA-Prompting is favorable against state-of-the-art VideoLLMs, yielding superior performance on dense video captioning and temporal understanding tasks including moment retrieval and temporalQA.
Recent advances in Multimodal Large Language Models (MLLMs) have improved image recognition and reasoning, but video-related tasks remain challenging due to memory constraints from dense frame processing. Existing Video Moment Retrieval (VMR) methodologies rely on sparse frame sampling, risking potential information loss, especially in lengthy videos. We propose SMORE (See MORE, store less), a framework that enhances memory efficiency while maintaining high information resolution. SMORE (1) uses query-guided captions to encode semantics aligned with user intent, (2) applies query-aware importance modulation to highlight relevant segments, and (3) adaptively compresses frames to preserve key content while reducing redundancy. This enables efficient video understanding without exceeding memory budgets. Experimental validation reveals that SMORE achieves state-of-the-art performance on QVHighlights, Charades-STA, and ActivityNet-Captions benchmarks.
Future motion representations, such as optical flow, offer immense value for control and generative tasks. However, forecasting generalizable spatially dense motion representations remains a key challenge, and learning such forecasting from noisy, real-world data remains relatively unexplored. We introduce FOFPred, a novel language-conditioned optical flow forecasting model featuring a unified Vision-Language Model (VLM) and Diffusion architecture. This unique combination enables strong multimodal reasoning with pixel-level generative fidelity for future motion prediction. Our model is trained on web-scale human activity data-a highly scalable but unstructured source. To extract meaningful signals from this noisy video-caption data, we employ crucial data preprocessing techniques and our unified architecture with strong image pretraining. The resulting trained model is then extended to tackle two distinct downstream tasks in control and generation. Evaluations across robotic manipulation and video generation under language-driven settings establish the cross-domain versatility of FOFPred, confirming the value of a unified VLM-Diffusion architecture and scalable learning from diverse web data for future optical flow prediction.
Audio-video joint generation has progressed rapidly, yet substantial challenges still remain. Non-commercial approaches still suffer audio-visual asynchrony, poor lip-speech alignment, and unimodal degradation, which can be stemmed from weak audio-visual correspondence modeling, limited generalization, and scarce high-quality dense-caption data. To address these issues, we introduce Klear and delve into three axes--model architecture, training strategy, and data curation. Architecturally, we adopt a single-tower design with unified DiT blocks and an Omni-Full Attention mechanism, achieving tight audio-visual alignment and strong scalability. Training-wise, we adopt a progressive multitask regime--random modality masking to joint optimization across tasks, and a multistage curriculum, yielding robust representations, strengthening A-V aligned world knowledge, and preventing unimodal collapse. For datasets, we present the first large-scale audio-video dataset with dense captions, and introduce a novel automated data-construction pipeline which annotates and filters millions of diverse, high-quality, strictly aligned audio-video-caption triplets. Building on this, Klear scales to large datasets, delivering high-fidelity, semantically and temporally aligned, instruction-following generation in both joint and unimodal settings while generalizing robustly to out-of-distribution scenarios. Across tasks, it substantially outperforms prior methods by a large margin and achieves performance comparable to Veo 3, offering a unified, scalable path toward next-generation audio-video synthesis.
Generating structured narrations for real-world e-commerce videos requires models to perceive fine-grained visual details and organize them into coherent, high-level stories--capabilities that existing approaches struggle to unify. We introduce the E-commerce Hierarchical Video Captioning (E-HVC) dataset with dual-granularity, temporally grounded annotations: a Temporal Chain-of-Thought that anchors event-level observations and Chapter Summary that compose them into concise, story-centric summaries. Rather than directly prompting chapters, we adopt a staged construction that first gathers reliable linguistic and visual evidence via curated ASR and frame-level descriptions, then refines coarse annotations into precise chapter boundaries and titles conditioned on the Temporal Chain-of-Thought, yielding fact-grounded, time-aligned narratives. We also observe that e-commerce videos are fast-paced and information-dense, with visual tokens dominating the input sequence. To enable efficient training while reducing input tokens, we propose the Scene-Primed ASR-anchored Compressor (SPA-Compressor), which compresses multimodal tokens into hierarchical scene and event representations guided by ASR semantic cues. Built upon these designs, our HiVid-Narrator framework achieves superior narrative quality with fewer input tokens compared to existing methods.
Video Anomaly Understanding (VAU) extends traditional Video Anomaly Detection (VAD) by not only localizing anomalies but also describing and reasoning about their context. Existing VAU approaches often rely on fine-tuned multimodal large language models (MLLMs) or external modules such as video captioners, which introduce costly annotations, complex training pipelines, and high inference overhead. In this work, we introduce PrismVAU, a lightweight yet effective system for real-time VAU that leverages a single off-the-shelf MLLM for anomaly scoring, explanation, and prompt optimization. PrismVAU operates in two complementary stages: (1) a coarse anomaly scoring module that computes frame-level anomaly scores via similarity to textual anchors, and (2) an MLLM-based refinement module that contextualizes anomalies through system and user prompts. Both textual anchors and prompts are optimized with a weakly supervised Automatic Prompt Engineering (APE) framework. Extensive experiments on standard VAD benchmarks demonstrate that PrismVAU delivers competitive detection performance and interpretable anomaly explanations -- without relying on instruction tuning, frame-level annotations, and external modules or dense processing -- making it an efficient and practical solution for real-world applications.
Omnimodal large language models have made significant strides in unifying audio and visual modalities; however, they often lack the fine-grained cross-modal understanding and have difficulty with multimodal alignment. To address these limitations, we introduce OmniAgent, a fully audio-guided active perception agent that dynamically orchestrates specialized tools to achieve more fine-grained audio-visual reasoning. Unlike previous works that rely on rigid, static workflows and dense frame-captioning, this paper demonstrates a paradigm shift from passive response generation to active multimodal inquiry. OmniAgent employs dynamic planning to autonomously orchestrate tool invocation on demand, strategically concentrating perceptual attention on task-relevant cues. Central to our approach is a novel coarse-to-fine audio-guided perception paradigm, which leverages audio cues to localize temporal events and guide subsequent reasoning. Extensive empirical evaluations on three audio-video understanding benchmarks demonstrate that OmniAgent achieves state-of-the-art performance, surpassing leading open-source and proprietary models by substantial margins of 10% - 20% accuracy.




While image editing has advanced rapidly, video editing remains less explored, facing challenges in consistency, control, and generalization. We study the design space of data, architecture, and control, and introduce \emph{EasyV2V}, a simple and effective framework for instruction-based video editing. On the data side, we compose existing experts with fast inverses to build diverse video pairs, lift image edit pairs into videos via single-frame supervision and pseudo pairs with shared affine motion, mine dense-captioned clips for video pairs, and add transition supervision to teach how edits unfold. On the model side, we observe that pretrained text-to-video models possess editing capability, motivating a simplified design. Simple sequence concatenation for conditioning with light LoRA fine-tuning suffices to train a strong model. For control, we unify spatiotemporal control via a single mask mechanism and support optional reference images. Overall, EasyV2V works with flexible inputs, e.g., video+text, video+mask+text, video+mask+reference+text, and achieves state-of-the-art video editing results, surpassing concurrent and commercial systems. Project page: https://snap-research.github.io/easyv2v/
Dense video captioning jointly localizes and captions salient events in untrimmed videos. Recent methods primarily focus on leveraging additional prior knowledge and advanced multi-task architectures to achieve competitive performance. However, these pipelines rely on implicit modeling that uses frame-level or fragmented video features, failing to capture the temporal coherence across event sequences and comprehensive semantics within visual contexts. To address this, we propose an explicit temporal-semantic modeling framework called Context-Aware Cross-Modal Interaction (CACMI), which leverages both latent temporal characteristics within videos and linguistic semantics from text corpus. Specifically, our model consists of two core components: Cross-modal Frame Aggregation aggregates relevant frames to extract temporally coherent, event-aligned textual features through cross-modal retrieval; and Context-aware Feature Enhancement utilizes query-guided attention to integrate visual dynamics with pseudo-event semantics. Extensive experiments on the ActivityNet Captions and YouCook2 datasets demonstrate that CACMI achieves the state-of-the-art performance on dense video captioning task.