Topic:Dense Video Captioning
What is Dense Video Captioning? Dense video captioning is the process of generating textual descriptions for multiple events in a video.
Papers and Code
May 26, 2025
Abstract:Videos are unique in their integration of temporal elements, including camera, scene, action, and attribute, along with their dynamic relationships over time. However, existing benchmarks for video understanding often treat these properties separately or narrowly focus on specific aspects, overlooking the holistic nature of video content. To address this, we introduce TUNA, a temporal-oriented benchmark for fine-grained understanding on dense dynamic videos, with two complementary tasks: captioning and QA. Our TUNA features diverse video scenarios and dynamics, assisted by interpretable and robust evaluation criteria. We evaluate several leading models on our benchmark, providing fine-grained performance assessments across various dimensions. This evaluation reveals key challenges in video temporal understanding, such as limited action description, inadequate multi-subject understanding, and insensitivity to camera motion, offering valuable insights for improving video understanding models. The data and code are available at https://friedrichor.github.io/projects/TUNA.
* Accepted to CVPR 2025 Main. Project page:
https://friedrichor.github.io/projects/TUNA
Via

May 12, 2025
Abstract:We present LangToMo, a vision-language-action framework structured as a dual-system architecture that uses pixel motion forecasts as intermediate representations. Our high-level System 2, an image diffusion model, generates text-conditioned pixel motion sequences from a single frame to guide robot control. Pixel motion-a universal, interpretable, and motion-centric representation-can be extracted from videos in a self-supervised manner, enabling diffusion model training on web-scale video-caption data. Treating generated pixel motion as learned universal representations, our low level System 1 module translates these into robot actions via motion-to-action mapping functions, which can be either hand-crafted or learned with minimal supervision. System 2 operates as a high-level policy applied at sparse temporal intervals, while System 1 acts as a low-level policy at dense temporal intervals. This hierarchical decoupling enables flexible, scalable, and generalizable robot control under both unsupervised and supervised settings, bridging the gap between language, motion, and action. Checkout https://kahnchana.github.io/LangToMo for visualizations.
Via

May 02, 2025
Abstract:Understanding causal event relationships and achieving fine-grained temporal grounding in videos remain challenging for vision-language models. Existing methods either compress video tokens to reduce temporal resolution, or treat videos as unsegmented streams, which obscures fine-grained event boundaries and limits the modeling of causal dependencies. We propose TEMPURA (Temporal Event Masked Prediction and Understanding for Reasoning in Action), a two-stage training framework that enhances video temporal understanding. TEMPURA first applies masked event prediction reasoning to reconstruct missing events and generate step-by-step causal explanations from dense event annotations, drawing inspiration from effective infilling techniques. TEMPURA then learns to perform video segmentation and dense captioning to decompose videos into non-overlapping events with detailed, timestamp-aligned descriptions. We train TEMPURA on VER, a large-scale dataset curated by us that comprises 1M training instances and 500K videos with temporally aligned event descriptions and structured reasoning steps. Experiments on temporal grounding and highlight detection benchmarks demonstrate that TEMPURA outperforms strong baseline models, confirming that integrating causal reasoning with fine-grained temporal segmentation leads to improved video understanding.
Via

Apr 24, 2025
Abstract:Soccer is a globally popular sporting event, typically characterized by long matches and distinctive highlight moments. Recent advances in Multimodal Large Language Models (MLLMs) offer promising capabilities in temporal grounding and video understanding, soccer commentary generation often requires precise temporal localization and semantically rich descriptions over long-form video. However, existing soccer MLLMs often rely on the temporal a priori for caption generation, so they cannot process the soccer video end-to-end. While some traditional approaches follow a two-step paradigm that is complex and fails to capture the global context to achieve suboptimal performance. To solve the above issues, we present TimeSoccer, the first end-to-end soccer MLLM for Single-anchor Dense Video Captioning (SDVC) in full-match soccer videos. TimeSoccer jointly predicts timestamps and generates captions in a single pass, enabling global context modeling across 45-minute matches. To support long video understanding of soccer matches, we introduce MoFA-Select, a training-free, motion-aware frame compression module that adaptively selects representative frames via a coarse-to-fine strategy, and incorporates complementary training paradigms to strengthen the model's ability to handle long temporal sequences. Extensive experiments demonstrate that our TimeSoccer achieves State-of-The-Art (SoTA) performance on the SDVC task in an end-to-end form, generating high-quality commentary with accurate temporal alignment and strong semantic relevance.
Via

Apr 22, 2025
Abstract:Recent video large language models (Video LLMs) often depend on costly human annotations or proprietary model APIs (e.g., GPT-4o) to produce training data, which limits their training at scale. In this paper, we explore large-scale training for Video LLM with cheap automatic speech recognition (ASR) transcripts. Specifically, we propose a novel streaming training approach that densely interleaves the ASR words and video frames according to their timestamps. Compared to previous studies in vision-language representation with ASR, our method naturally fits the streaming characteristics of ASR, thus enabling the model to learn temporally-aligned, fine-grained vision-language modeling. To support the training algorithm, we introduce a data production pipeline to process YouTube videos and their closed captions (CC, same as ASR), resulting in Live-CC-5M dataset for pre-training and Live-WhisperX-526K dataset for high-quality supervised fine-tuning (SFT). Remarkably, even without SFT, the ASR-only pre-trained LiveCC-7B-Base model demonstrates competitive general video QA performance and exhibits a new capability in real-time video commentary. To evaluate this, we carefully design a new LiveSports-3K benchmark, using LLM-as-a-judge to measure the free-form commentary. Experiments show our final LiveCC-7B-Instruct model can surpass advanced 72B models (Qwen2.5-VL-72B-Instruct, LLaVA-Video-72B) in commentary quality even working in a real-time mode. Meanwhile, it achieves state-of-the-art results at the 7B/8B scale on popular video QA benchmarks such as VideoMME and OVOBench, demonstrating the broad generalizability of our approach. All resources of this paper have been released at https://showlab.github.io/livecc.
* CVPR 2025. If any references are missing, please contact
joyachen@u.nus.edu
Via

Apr 22, 2025
Abstract:We propose MR. Video, an agentic long video understanding framework that demonstrates the simple yet effective MapReduce principle for processing long videos: (1) Map: independently and densely perceiving short video clips, and (2) Reduce: jointly aggregating information from all clips. Compared with sequence-to-sequence vision-language models (VLMs), MR. Video performs detailed short video perception without being limited by context length. Compared with existing video agents that typically rely on sequential key segment selection, the Map operation enables simpler and more scalable sequence parallel perception of short video segments. Its Reduce step allows for more comprehensive context aggregation and reasoning, surpassing explicit key segment retrieval. This MapReduce principle is applicable to both VLMs and video agents, and we use LLM agents to validate its effectiveness. In practice, MR. Video employs two MapReduce stages: (A) Captioning: generating captions for short video clips (map), then standardizing repeated characters and objects into shared names (reduce); (B) Analysis: for each user question, analyzing relevant information from individual short videos (map), and integrating them into a final answer (reduce). MR. Video achieves over 10% accuracy improvement on the challenging LVBench compared to state-of-the-art VLMs and video agents. Code is available at: https://github.com/ziqipang/MR-Video
* Preprint
Via

Apr 17, 2025
Abstract:We introduce Perception Encoder (PE), a state-of-the-art encoder for image and video understanding trained via simple vision-language learning. Traditionally, vision encoders have relied on a variety of pretraining objectives, each tailored to specific downstream tasks such as classification, captioning, or localization. Surprisingly, after scaling our carefully tuned image pretraining recipe and refining with our robust video data engine, we find that contrastive vision-language training alone can produce strong, general embeddings for all of these downstream tasks. There is only one caveat: these embeddings are hidden within the intermediate layers of the network. To draw them out, we introduce two alignment methods, language alignment for multimodal language modeling, and spatial alignment for dense prediction. Together with the core contrastive checkpoint, our PE family of models achieves state-of-the-art performance on a wide variety of tasks, including zero-shot image and video classification and retrieval; document, image, and video Q&A; and spatial tasks such as detection, depth estimation, and tracking. To foster further research, we are releasing our models, code, and a novel dataset of synthetically and human-annotated videos.
* Initial Submission
Via

Apr 10, 2025
Abstract:We introduce VideoComp, a benchmark and learning framework for advancing video-text compositionality understanding, aimed at improving vision-language models (VLMs) in fine-grained temporal alignment. Unlike existing benchmarks focused on static image-text compositionality or isolated single-event videos, our benchmark targets alignment in continuous multi-event videos. Leveraging video-text datasets with temporally localized event captions (e.g. ActivityNet-Captions, YouCook2), we construct two compositional benchmarks, ActivityNet-Comp and YouCook2-Comp. We create challenging negative samples with subtle temporal disruptions such as reordering, action word replacement, partial captioning, and combined disruptions. These benchmarks comprehensively test models' compositional sensitivity across extended, cohesive video-text sequences. To improve model performance, we propose a hierarchical pairwise preference loss that strengthens alignment with temporally accurate pairs and gradually penalizes increasingly disrupted ones, encouraging fine-grained compositional learning. To mitigate the limited availability of densely annotated video data, we introduce a pretraining strategy that concatenates short video-caption pairs to simulate multi-event sequences. We evaluate video-text foundational models and large multimodal models (LMMs) on our benchmark, identifying both strengths and areas for improvement in compositionality. Overall, our work provides a comprehensive framework for evaluating and enhancing model capabilities in achieving fine-grained, temporally coherent video-text alignment.
Via

Mar 31, 2025
Abstract:To address the bottleneck of accurate user intent interpretation within the current video generation community, we present Any2Caption, a novel framework for controllable video generation under any condition. The key idea is to decouple various condition interpretation steps from the video synthesis step. By leveraging modern multimodal large language models (MLLMs), Any2Caption interprets diverse inputs--text, images, videos, and specialized cues such as region, motion, and camera poses--into dense, structured captions that offer backbone video generators with better guidance. We also introduce Any2CapIns, a large-scale dataset with 337K instances and 407K conditions for any-condition-to-caption instruction tuning. Comprehensive evaluations demonstrate significant improvements of our system in controllability and video quality across various aspects of existing video generation models. Project Page: https://sqwu.top/Any2Cap/
Via

Mar 14, 2025
Abstract:Automated surgical workflow analysis is crucial for education, research, and clinical decision-making, but the lack of annotated datasets hinders the development of accurate and comprehensive workflow analysis solutions. We introduce a novel approach for addressing the sparsity and heterogeneity of annotated training data inspired by the human learning procedure of watching experts and understanding their explanations. Our method leverages a video-language model trained on alignment, denoising, and generative tasks to learn short-term spatio-temporal and multimodal representations. A task-specific temporal model is then used to capture relationships across entire videos. To achieve comprehensive video-language understanding in the surgical domain, we introduce a data collection and filtering strategy to construct a large-scale pretraining dataset from educational YouTube videos. We then utilize parameter-efficient fine-tuning by projecting downstream task annotations from publicly available surgical datasets into the language domain. Extensive experiments in two surgical domains demonstrate the effectiveness of our approach, with performance improvements of up to 7% in phase segmentation tasks, 8% in zero-shot phase segmentation, and comparable capabilities to fully-supervised models in few-shot settings. Harnessing our model's capabilities for long-range temporal localization and text generation, we present the first comprehensive solution for dense video captioning (DVC) of surgical videos, addressing this task despite the absence of existing DVC datasets in the surgical domain. We introduce a novel approach to surgical workflow understanding that leverages video-language pretraining, large-scale video pretraining, and optimized fine-tuning. Our method improves performance over state-of-the-art techniques and enables new downstream tasks for surgical video understanding.
* 14 pages main manuscript with 3 figures; 6 pages supplementary
material with 3 figures. To be presented at International Conference on
Information Processing in Computer-Assisted Interventions (IPCAI 2025). To be
published in International Journal of Computer Assisted Radiology and Surgery
(IJCARS)
Via
