Rutgers University
Abstract:Recent advances in large language models (LLMs) have made automated multiple-choice question (MCQ) generation increasingly feasible; however, reliably producing items that satisfy controlled cognitive demands remains a challenge. To address this gap, we introduce ReQUESTA, a hybrid, multi-agent framework for generating cognitively diverse MCQs that systematically target text-based, inferential, and main idea comprehension. ReQUESTA decomposes MCQ authoring into specialized subtasks and coordinates LLM-powered agents with rule-based components to support planning, controlled generation, iterative evaluation, and post-processing. We evaluated the framework in a large-scale reading comprehension study using academic expository texts, comparing ReQUESTA-generated MCQs with those produced by a single-pass GPT-5 zero-shot baseline. Psychometric analyses of learner responses assessed item difficulty and discrimination, while expert raters evaluated question quality across multiple dimensions, including topic relevance and distractor quality. Results showed that ReQUESTA-generated items were consistently more challenging, more discriminative, and more strongly aligned with overall reading comprehension performance. Expert evaluations further indicated stronger alignment with central concepts and superior distractor linguistic consistency and semantic plausibility, particularly for inferential questions. These findings demonstrate that hybrid, agentic orchestration can systematically improve the reliability and controllability of LLM-based generation, highlighting workflow design as a key lever for structured artifact generation beyond single-pass prompting.
Abstract:We introduce CompTok, a training framework for learning visual tokenizers whose tokens are enhanced for compositionality. CompTok uses a token-conditioned diffusion decoder. By employing an InfoGAN-style objective, where we train a recognition model to predict the tokens used to condition the diffusion decoder using the decoded images, we enforce the decoder to not ignore any of the tokens. To promote compositional control, besides the original images, CompTok also trains on tokens formed by swapping token subsets between images, enabling more compositional control of the token over the decoder. As the swapped tokens between images do not have ground truth image targets, we apply a manifold constraint via an adversarial flow regularizer to keep unpaired swap generations on the natural-image distribution. The resulting tokenizer not only achieves state-of-the-art performance on image class-conditioned generation, but also demonstrates properties such as swapping tokens between images to achieve high level semantic editing of an image. Additionally, we propose two metrics that measures the landscape of the token space that can be useful to describe not only the compositionality of the tokens, but also how easy to learn the landscape is for a generator to be trained on this space. We show in experiments that CompTok can improve on both of the metrics as well as supporting state-of-the-art generators for class conditioned generation.
Abstract:Latent reasoning compresses the chain-of-thought (CoT) into continuous hidden states, yet existing methods rely on dense latent transitions that remain difficult to interpret and control. Meanwhile, sparse representation models uncover human-interpretable semantic features but remain largely confined to post-hoc analysis. We reconcile this tension by proposing LSTR (Latent Sparse Transcoder Reasoning), a latent reasoning framework that elevates functional sparse transcoders into active reasoning operators to perform multi-step computation through sparse semantic transitions. At its core, LSTR employs a Latent Transition Transcoder (LTT) with a residual skip architecture that decouples linear manifold transport from sparse semantic updates, enabling controllable semantic resolution via explicit sparsity constraints. Extensive experiments show that LSTR preserves reasoning accuracy and compression efficiency while substantially improving interpretability over dense latent baselines. Causal interventions and trajectory analyses further demonstrate that these sparse features act as both interpretable and causally effective operators in the reasoning process.
Abstract:Large Language Model (LLM)-based mobile agents have made significant performance advancements. However, these agents often follow explicit user instructions while overlooking personalized needs, leading to significant limitations for real users, particularly without personalized context: (1) inability to interpret ambiguous instructions, (2) lack of learning from user interaction history, and (3) failure to handle personalized instructions. To alleviate the above challenges, we propose Me-Agent, a learnable and memorable personalized mobile agent. Specifically, Me-Agent incorporates a two-level user habit learning approach. At the prompt level, we design a user preference learning strategy enhanced with a Personal Reward Model to improve personalization performance. At the memory level, we design a Hierarchical Preference Memory, which stores users' long-term memory and app-specific memory in different level memory. To validate the personalization capabilities of mobile agents, we introduce User FingerTip, a new benchmark featuring numerous ambiguous instructions for daily life. Extensive experiments on User FingerTip and general benchmarks demonstrate that Me-Agent achieves state-of-the-art performance in personalization while maintaining competitive instruction execution performance.
Abstract:Audio Large Language Models (Audio LLMs) have demonstrated strong capabilities in integrating speech perception with language understanding. However, whether their internal representations align with human neural dynamics during naturalistic listening remains largely unexplored. In this work, we systematically examine layer-wise representational alignment between 12 open-source Audio LLMs and Electroencephalogram (EEG) signals across 2 datasets. Specifically, we employ 8 similarity metrics, such as Spearman-based Representational Similarity Analysis (RSA), to characterize within-sentence representational geometry. Our analysis reveals 3 key findings: (1) we observe a rank-dependence split, in which model rankings vary substantially across different similarity metrics; (2) we identify spatio-temporal alignment patterns characterized by depth-dependent alignment peaks and a pronounced increase in RSA within the 250-500 ms time window, consistent with N400-related neural dynamics; (3) we find an affective dissociation whereby negative prosody, identified using a proposed Tri-modal Neighborhood Consistency (TNC) criterion, reduces geometric similarity while enhancing covariance-based dependence. These findings provide new neurobiological insights into the representational mechanisms of Audio LLMs.
Abstract:Multimodal LLMs are powerful but prone to object hallucinations, which describe non-existent entities and harm reliability. While recent unlearning methods attempt to mitigate this, we identify a critical flaw: structural fragility. We empirically demonstrate that standard erasure achieves only superficial suppression, trapping the model in sharp minima where hallucinations catastrophically resurge after lightweight relearning. To ensure geometric stability, we propose SARE, which casts unlearning as a targeted min-max optimization problem and uses a Targeted-SAM mechanism to explicitly flatten the loss landscape around hallucinated concepts. By suppressing hallucinations under simulated worst-case parameter perturbations, our framework ensures robust removal stable against weight shifts. Extensive experiments demonstrate that SARE significantly outperforms baselines in erasure efficacy while preserving general generation quality. Crucially, it maintains persistent hallucination suppression against relearning and parameter updates, validating the effectiveness of geometric stabilization.
Abstract:Despite the intrinsic risk-awareness of Large Language Models (LLMs), current defenses often result in shallow safety alignment, rendering models vulnerable to disguised attacks (e.g., prefilling) while degrading utility. To bridge this gap, we propose SafeThinker, an adaptive framework that dynamically allocates defensive resources via a lightweight gateway classifier. Based on the gateway's risk assessment, inputs are routed through three distinct mechanisms: (i) a Standardized Refusal Mechanism for explicit threats to maximize efficiency; (ii) a Safety-Aware Twin Expert (SATE) module to intercept deceptive attacks masquerading as benign queries; and (iii) a Distribution-Guided Think (DDGT) component that adaptively intervenes during uncertain generation. Experiments show that SafeThinker significantly lowers attack success rates across diverse jailbreak strategies without compromising utility, demonstrating that coordinating intrinsic judgment throughout the generation process effectively balances robustness and practicality.
Abstract:The rise of vision language models (VLMs) paves a new path for radio frequency (RF) perception. Rather than designing task-specific neural receivers, we ask if VLMs can learn to recognize modulations when RF waveforms are expressed as images. In this work, we find that they can. In specific, in this paper, we introduce a practical pipeline for converting complex IQ streams into visually interpretable inputs, hence, enabling general-purpose VLMs to classify modulation schemes without changing their underlying design. Building on this, we construct an RF visual question answering (VQA) benchmark framework that covers 57 classes across major families of analog/digital modulations with three complementary image modes, namely, (i) short \emph{time-series} IQ segments represented as real/imaginary traces, (ii) magnitude-only \emph{spectrograms}, and (iii) \emph{joint} representations that pair spectrograms with a synchronized time-series waveforms. We design uniform zero-shot and few-shot prompts for both class-level and family-level evaluations. Our finetuned VLMs with these images achieve competitive accuracy of $90\%$ compared to $10\%$ of the base models. Furthermore, the fine-tuned VLMs show robust performance under noise and demonstrate high generalization performance to unseen modulation types, without relying on RF-domain priors or specialized architectures. The obtained results show that combining RF-to-image conversion with promptable VLMs provides a scalable and practical foundation for RF-aware AI systems in future 6G networks.
Abstract:Customer Lifetime Value (LTV) prediction, a central problem in modern marketing, is characterized by a unique zero-inflated and long-tail data distribution. This distribution presents two fundamental challenges: (1) the vast majority of low-to-medium value users numerically overwhelm the small but critically important segment of high-value "whale" users, and (2) significant value heterogeneity exists even within the low-to-medium value user base. Common approaches either rely on rigid statistical assumptions or attempt to decouple ranking and regression using ordered buckets; however, they often enforce ordinality through loss-based constraints rather than inherent architectural design, failing to balance global accuracy with high-value precision. To address this gap, we propose \textbf{C}onditional \textbf{C}ascaded \textbf{O}rdinal-\textbf{R}esidual Networks \textbf{(CC-OR-Net)}, a novel unified framework that achieves a more robust decoupling through \textbf{structural decomposition}, where ranking is architecturally guaranteed. CC-OR-Net integrates three specialized components: a \textit{structural ordinal decomposition module} for robust ranking, an \textit{intra-bucket residual module} for fine-grained regression, and a \textit{targeted high-value augmentation module} for precision on top-tier users. Evaluated on real-world datasets with over 300M users, CC-OR-Net achieves a superior trade-off across all key business metrics, outperforming state-of-the-art methods in creating a holistic and commercially valuable LTV prediction solution.
Abstract:Promptable segmentation foundation models such as SAM3 have demonstrated strong generalization capabilities through interactive and concept-based prompting. However, their direct applicability to medical image segmentation remains limited by severe domain shifts, the absence of privileged spatial prompts, and the need to reason over complex anatomical and volumetric structures. Here we present Medical SAM3, a foundation model for universal prompt-driven medical image segmentation, obtained by fully fine-tuning SAM3 on large-scale, heterogeneous 2D and 3D medical imaging datasets with paired segmentation masks and text prompts. Through a systematic analysis of vanilla SAM3, we observe that its performance degrades substantially on medical data, with its apparent competitiveness largely relying on strong geometric priors such as ground-truth-derived bounding boxes. These findings motivate full model adaptation beyond prompt engineering alone. By fine-tuning SAM3's model parameters on 33 datasets spanning 10 medical imaging modalities, Medical SAM3 acquires robust domain-specific representations while preserving prompt-driven flexibility. Extensive experiments across organs, imaging modalities, and dimensionalities demonstrate consistent and significant performance gains, particularly in challenging scenarios characterized by semantic ambiguity, complex morphology, and long-range 3D context. Our results establish Medical SAM3 as a universal, text-guided segmentation foundation model for medical imaging and highlight the importance of holistic model adaptation for achieving robust prompt-driven segmentation under severe domain shift. Code and model will be made available at https://github.com/AIM-Research-Lab/Medical-SAM3.