Rutgers University
Abstract:Customer Lifetime Value (LTV) prediction, a central problem in modern marketing, is characterized by a unique zero-inflated and long-tail data distribution. This distribution presents two fundamental challenges: (1) the vast majority of low-to-medium value users numerically overwhelm the small but critically important segment of high-value "whale" users, and (2) significant value heterogeneity exists even within the low-to-medium value user base. Common approaches either rely on rigid statistical assumptions or attempt to decouple ranking and regression using ordered buckets; however, they often enforce ordinality through loss-based constraints rather than inherent architectural design, failing to balance global accuracy with high-value precision. To address this gap, we propose \textbf{C}onditional \textbf{C}ascaded \textbf{O}rdinal-\textbf{R}esidual Networks \textbf{(CC-OR-Net)}, a novel unified framework that achieves a more robust decoupling through \textbf{structural decomposition}, where ranking is architecturally guaranteed. CC-OR-Net integrates three specialized components: a \textit{structural ordinal decomposition module} for robust ranking, an \textit{intra-bucket residual module} for fine-grained regression, and a \textit{targeted high-value augmentation module} for precision on top-tier users. Evaluated on real-world datasets with over 300M users, CC-OR-Net achieves a superior trade-off across all key business metrics, outperforming state-of-the-art methods in creating a holistic and commercially valuable LTV prediction solution.
Abstract:Promptable segmentation foundation models such as SAM3 have demonstrated strong generalization capabilities through interactive and concept-based prompting. However, their direct applicability to medical image segmentation remains limited by severe domain shifts, the absence of privileged spatial prompts, and the need to reason over complex anatomical and volumetric structures. Here we present Medical SAM3, a foundation model for universal prompt-driven medical image segmentation, obtained by fully fine-tuning SAM3 on large-scale, heterogeneous 2D and 3D medical imaging datasets with paired segmentation masks and text prompts. Through a systematic analysis of vanilla SAM3, we observe that its performance degrades substantially on medical data, with its apparent competitiveness largely relying on strong geometric priors such as ground-truth-derived bounding boxes. These findings motivate full model adaptation beyond prompt engineering alone. By fine-tuning SAM3's model parameters on 33 datasets spanning 10 medical imaging modalities, Medical SAM3 acquires robust domain-specific representations while preserving prompt-driven flexibility. Extensive experiments across organs, imaging modalities, and dimensionalities demonstrate consistent and significant performance gains, particularly in challenging scenarios characterized by semantic ambiguity, complex morphology, and long-range 3D context. Our results establish Medical SAM3 as a universal, text-guided segmentation foundation model for medical imaging and highlight the importance of holistic model adaptation for achieving robust prompt-driven segmentation under severe domain shift. Code and model will be made available at https://github.com/AIM-Research-Lab/Medical-SAM3.
Abstract:Memory is critical for dialogue agents to maintain coherence and enable continuous adaptation in long-term interactions. While existing memory mechanisms offer basic storage and retrieval capabilities, they are hindered by two primary limitations: (1) rigid memory granularity often disrupts semantic integrity, resulting in fragmented and incoherent memory units; (2) prevalent flat retrieval paradigms rely solely on surface-level semantic similarity, neglecting the structural cues of discourse required to navigate and locate specific episodic contexts. To mitigate these limitations, drawing inspiration from Event Segmentation Theory, we propose ES-Mem, a framework incorporating two core components: (1) a dynamic event segmentation module that partitions long-term interactions into semantically coherent events with distinct boundaries; (2) a hierarchical memory architecture that constructs multi-layered memories and leverages boundary semantics to anchor specific episodic memory for precise context localization. Evaluations on two memory benchmarks demonstrate that ES-Mem yields consistent performance gains over baseline methods. Furthermore, the proposed event segmentation module exhibits robust applicability on dialogue segmentation datasets.
Abstract:Federated learning (FL) addresses data privacy and silo issues in large language models (LLMs). Most prior work focuses on improving the training efficiency of federated LLMs. However, security in open environments is overlooked, particularly defenses against malicious clients. To investigate the safety of LLMs during FL, we conduct preliminary experiments to analyze potential attack surfaces and defensible characteristics from the perspective of Low-Rank Adaptation (LoRA) weights. We find two key properties of FL: 1) LLMs are vulnerable to attacks from malicious clients in FL, and 2) LoRA weights exhibit distinct behavioral patterns that can be filtered through simple classifiers. Based on these properties, we propose Safe-FedLLM, a probe-based defense framework for federated LLMs, constructing defenses across three dimensions: Step-Level, Client-Level, and Shadow-Level. The core concept of Safe-FedLLM is to perform probe-based discrimination on the LoRA weights locally trained by each client during FL, treating them as high-dimensional behavioral features and using lightweight classification models to determine whether they possess malicious attributes. Extensive experiments demonstrate that Safe-FedLLM effectively enhances the defense capability of federated LLMs without compromising performance on benign data. Notably, our method effectively suppresses malicious data impact without significant impact on training speed, and remains effective even with many malicious clients. Our code is available at: https://github.com/dmqx/Safe-FedLLM.
Abstract:The "reversal curse" refers to the phenomenon where large language models (LLMs) exhibit predominantly unidirectional behavior when processing logically bidirectional relationships. Prior work attributed this to autoregressive training -- predicting the next token inherently favors left-to-right information flow over genuine bidirectional knowledge associations. However, we observe that Diffusion LLMs (DLLMs), despite being trained bidirectionally, also suffer from the reversal curse. To investigate the root causes, we conduct systematic experiments on DLLMs and identify three key reasons: 1) entity fragmentation during training, 2) data asymmetry, and 3) missing entity relations. Motivated by the analysis of these reasons, we propose Diffusion Entity-Relation Modeling (DiffER), which addresses the reversal curse through entity-aware training and balanced data construction. Specifically, DiffER introduces whole-entity masking, which mitigates entity fragmentation by predicting complete entities in a single step. DiffER further employs distribution-symmetric and relation-enhanced data construction strategies to alleviate data asymmetry and missing relations. Extensive experiments demonstrate that DiffER effectively alleviates the reversal curse in Diffusion LLMs, offering new perspectives for future research.
Abstract:As vision-language models (VLMs) become widely adopted, VLM-based attribute inference attacks have emerged as a serious privacy concern, enabling adversaries to infer private attributes from images shared on social media. This escalating threat calls for dedicated protection methods to safeguard user privacy. However, existing methods often degrade the visual quality of images or interfere with vision-based functions on social media, thereby failing to achieve a desirable balance between privacy protection and user experience. To address this challenge, we propose a novel protection method that jointly optimizes privacy suppression and utility preservation under a visual consistency constraint. While our method is conceptually effective, fair comparisons between methods remain challenging due to the lack of publicly available evaluation datasets. To fill this gap, we introduce VPI-COCO, a publicly available benchmark comprising 522 images with hierarchically structured privacy questions and corresponding non-private counterparts, enabling fine-grained and joint evaluation of protection methods in terms of privacy preservation and user experience. Building upon this benchmark, experiments on multiple VLMs demonstrate that our method effectively reduces PAR below 25%, keeps NPAR above 88%, maintains high visual consistency, and generalizes well to unseen and paraphrased privacy questions, demonstrating its strong practical applicability for real-world VLM deployments.
Abstract:Clinical decision-making in oncology requires predicting dynamic disease evolution, a task current static AI predictors cannot perform. While world models (WMs) offer a paradigm for generative prediction, existing medical applications remain limited. Existing methods often rely on stochastic diffusion models, focusing on visual reconstruction rather than causal, physiological transitions. Furthermore, in medical domain, models like MeWM typically ignore patient-specific temporal and clinical contexts and lack a feedback mechanism to link predictions to treatment decisions. To address these gaps, we introduce CLARITY, a medical world model that forecasts disease evolution directly within a structured latent space. It explicitly integrates time intervals (temporal context) and patient-specific data (clinical context) to model treatment-conditioned progression as a smooth, interpretable trajectory, and thus generate physiologically faithful, individualized treatment plans. Finally, CLARITY introduces a novel prediction-to-decision framework, translating latent rollouts into transparent, actionable recommendations. CLARITY demonstrates state-of-the-art performance in treatment planning. On the MU-Glioma-Post dataset, our approach outperforms recent MeWM by 12\%, and significantly surpasses all other medical-specific large language models.
Abstract:While thinking-aware generation aims to improve performance on complex tasks, we identify a critical failure mode where existing sequential, autoregressive approaches can paradoxically degrade performance due to error propagation. To systematically analyze this issue, we propose ParaBench, a new benchmark designed to evaluate both text and image output modalities. Our analysis using ParaBench reveals that this performance degradation is strongly correlated with poor alignment between the generated reasoning and the final image. To resolve this, we propose a parallel multimodal diffusion framework, MMaDA-Parallel, that enables continuous, bidirectional interaction between text and images throughout the entire denoising trajectory. MMaDA-Parallel is trained with supervised finetuning and then further optimized by Parallel Reinforcement Learning (ParaRL), a novel strategy that applies semantic rewards along the trajectory to enforce cross-modal consistency. Experiments validate that our model significantly improves cross-modal alignment and semantic consistency, achieving a 6.9\% improvement in Output Alignment on ParaBench compared to the state-of-the-art model, Bagel, establishing a more robust paradigm for thinking-aware image synthesis. Our code is open-sourced at https://github.com/tyfeld/MMaDA-Parallel
Abstract:Graph Neural Networks (GNNs) have achieved remarkable success across diverse applications, yet they remain limited by oversmoothing and poor performance on heterophilic graphs. To address these challenges, we introduce a novel framework that equips graphs with a complex-weighted structure, assigning each edge a complex number to drive a diffusion process that extends random walks into the complex domain. We prove that this diffusion is highly expressive: with appropriately chosen complex weights, any node-classification task can be solved in the steady state of a complex random walk. Building on this insight, we propose the Complex-Weighted Convolutional Network (CWCN), which learns suitable complex-weighted structures directly from data while enriching diffusion with learnable matrices and nonlinear activations. CWCN is simple to implement, requires no additional hyperparameters beyond those of standard GNNs, and achieves competitive performance on benchmark datasets. Our results demonstrate that complex-weighted diffusion provides a principled and general mechanism for enhancing GNN expressiveness, opening new avenues for models that are both theoretically grounded and practically effective.
Abstract:Ensuring the reliability of agent architectures and effectively identifying problematic agents when failures occur are crucial challenges in multi-agent systems (MAS). Advances in large language models (LLMs) have established LLM-based agents as a major branch of MAS, enabling major breakthroughs in complex problem solving and world modeling. However, the reliability implications of this shift remain largely unexplored. i.e., whether substituting traditional agents with LLM-based agents can effectively enhance the reliability of MAS. In this work, we investigate and quantify the reliability of LLM-based agents from the perspective of Byzantine fault tolerance. We observe that LLM-based agents demonstrate stronger skepticism when processing erroneous message flows, a characteristic that enables them to outperform traditional agents across different topological structures. Motivated by the results of the pilot experiment, we design CP-WBFT, a confidence probe-based weighted Byzantine Fault Tolerant consensus mechanism to enhance the stability of MAS with different topologies. It capitalizes on the intrinsic reflective and discriminative capabilities of LLMs by employing a probe-based, weighted information flow transmission method to improve the reliability of LLM-based agents. Extensive experiments demonstrate that CP-WBFT achieves superior performance across diverse network topologies under extreme Byzantine conditions (85.7\% fault rate). Notably, our approach surpasses traditional methods by attaining remarkable accuracy on various topologies and maintaining strong reliability in both mathematical reasoning and safety assessment tasks.