Abstract:Federated fine-tuning of large language models (FedLLMs) presents a promising approach for achieving strong model performance while preserving data privacy in sensitive domains. However, the inherent memorization ability of LLMs makes them vulnerable to training data extraction attacks. To investigate this risk, we introduce simple yet effective extraction attack algorithms specifically designed for FedLLMs. In contrast to prior "verbatim" extraction attacks, which assume access to fragments from all training data, our approach operates under a more realistic threat model, where the attacker only has access to a single client's data and aims to extract previously unseen personally identifiable information (PII) from other clients. This requires leveraging contextual prefixes held by the attacker to generalize across clients. To evaluate the effectiveness of our approaches, we propose two rigorous metrics-coverage rate and efficiency-and extend a real-world legal dataset with PII annotations aligned with CPIS, GDPR, and CCPA standards, achieving 89.9% human-verified precision. Experimental results show that our method can extract up to 56.57% of victim-exclusive PII, with "Address," "Birthday," and "Name" being the most vulnerable categories. Our findings underscore the pressing need for robust defense strategies and contribute a new benchmark and evaluation framework for future research in privacy-preserving federated learning.
Abstract:Typical video modeling methods, such as LLava, represent videos as sequences of visual tokens, which are then processed by the LLM backbone for effective video understanding. However, this approach leads to a massive number of visual tokens, especially for long videos. A practical solution is to first extract relevant visual information from the large visual context before feeding it into the LLM backbone, thereby reducing computational overhead. In this work, we introduce DynTok, a novel \textbf{Dyn}amic video \textbf{Tok}en compression strategy. DynTok adaptively splits visual tokens into groups and merges them within each group, achieving high compression in regions with low information density while preserving essential content. Our method reduces the number of tokens to 44.4% of the original size while maintaining comparable performance. It further benefits from increasing the number of video frames and achieves 65.3% on Video-MME and 72.5% on MLVU. By applying this simple yet effective compression method, we expose the redundancy in video token representations and offer insights for designing more efficient video modeling techniques.
Abstract:Videos are unique in their integration of temporal elements, including camera, scene, action, and attribute, along with their dynamic relationships over time. However, existing benchmarks for video understanding often treat these properties separately or narrowly focus on specific aspects, overlooking the holistic nature of video content. To address this, we introduce TUNA, a temporal-oriented benchmark for fine-grained understanding on dense dynamic videos, with two complementary tasks: captioning and QA. Our TUNA features diverse video scenarios and dynamics, assisted by interpretable and robust evaluation criteria. We evaluate several leading models on our benchmark, providing fine-grained performance assessments across various dimensions. This evaluation reveals key challenges in video temporal understanding, such as limited action description, inadequate multi-subject understanding, and insensitivity to camera motion, offering valuable insights for improving video understanding models. The data and code are available at https://friedrichor.github.io/projects/TUNA.
Abstract:Multimodal information retrieval (MIR) faces inherent challenges due to the heterogeneity of data sources and the complexity of cross-modal alignment. While previous studies have identified modal gaps in feature spaces, a systematic approach to address these challenges remains unexplored. In this work, we introduce UNITE, a universal framework that tackles these challenges through two critical yet underexplored aspects: data curation and modality-aware training configurations. Our work provides the first comprehensive analysis of how modality-specific data properties influence downstream task performance across diverse scenarios. Moreover, we propose Modal-Aware Masked Contrastive Learning (MAMCL) to mitigate the competitive relationships among the instances of different modalities. Our framework achieves state-of-the-art results on multiple multimodal retrieval benchmarks, outperforming existing methods by notable margins. Through extensive experiments, we demonstrate that strategic modality curation and tailored training protocols are pivotal for robust cross-modal representation learning. This work not only advances MIR performance but also provides a foundational blueprint for future research in multimodal systems. Our project is available at https://friedrichor.github.io/projects/UNITE.
Abstract:Current vision-language models (VLMs) have demonstrated remarkable capabilities across diverse video understanding applications. Designing VLMs for video inputs requires effectively modeling the temporal dimension (i.e. capturing dependencies across frames) and balancing the processing of short and long videos. Specifically, short videos demand preservation of fine-grained details, whereas long videos require strategic compression of visual information to handle extensive temporal contexts efficiently. However, our empirical analysis reveals a critical limitation: most existing VLMs suffer severe performance degradation in long video understanding tasks when compressing visual tokens below a quarter of their original visual tokens. To enable more effective modeling of both short and long video inputs, we propose Clapper, a method that utilizes a slow-fast strategy for video representation and introduces a novel module named TimePerceiver for efficient temporal-spatial encoding within existing VLM backbones. By using our method, we achieves 13x compression of visual tokens per frame (averaging 61 tokens/frame) without compromising QA accuracy. In our experiments, Clapper achieves 62.0% on VideoMME, 69.8% on MLVU, and 67.4% on TempCompass, all with fewer than 6,000 visual tokens per video. The code will be publicly available on the homepage.
Abstract:Recent advances in automated theorem proving (ATP) through LLMs have highlighted the potential of formal reasoning with Lean 4 codes. However, ATP has not yet be revolutionized by the recent posttraining scaling as demonstrated by Open AI O1/O3 and Deepseek R1. In this work, we investigate the entire posttraining of ATP, aiming to align it with breakthroughs in reasoning models in natural languages. To begin, we continual train current ATP models with a hybrid dataset, which consists of numerous statement-proof pairs, and additional data aimed at incorporating cognitive behaviors that emulate human reasoning and hypothesis refinement. Next, we explore reinforcement learning with the use of outcome reward returned by Lean 4 compiler. Through our designed continual training and reinforcement learning processes, we have successfully improved existing formal provers, including both DeepSeek-Prover-v1.5 and Goedel-Prover, achieving state-of-the-art performance in the field of whole-proof generation. For example, we achieve a 59.8% pass rate (pass@32) on MiniF2F. This is an on-going project and we will progressively update our findings, release our data and training details.
Abstract:Multimodal Retrieval-Augmented Generation (MRAG) enhances reasoning capabilities by integrating external knowledge. However, existing benchmarks primarily focus on simple image-text interactions, overlooking complex visual formats like charts that are prevalent in real-world applications. In this work, we introduce a novel task, Chart-based MRAG, to address this limitation. To semi-automatically generate high-quality evaluation samples, we propose CHARt-based document question-answering GEneration (CHARGE), a framework that produces evaluation data through structured keypoint extraction, crossmodal verification, and keypoint-based generation. By combining CHARGE with expert validation, we construct Chart-MRAG Bench, a comprehensive benchmark for chart-based MRAG evaluation, featuring 4,738 question-answering pairs across 8 domains from real-world documents. Our evaluation reveals three critical limitations in current approaches: (1) unified multimodal embedding retrieval methods struggles in chart-based scenarios, (2) even with ground-truth retrieval, state-of-the-art MLLMs achieve only 58.19% Correctness and 73.87% Coverage scores, and (3) MLLMs demonstrate consistent text-over-visual modality bias during Chart-based MRAG reasoning. The CHARGE and Chart-MRAG Bench are released at https://github.com/Nomothings/CHARGE.git.
Abstract:Large language models (LLMs) have achieved remarkable success in natural language processing (NLP) tasks, yet their substantial memory requirements present significant challenges for deployment on resource-constrained devices. Singular Value Decomposition (SVD) has emerged as a promising compression technique for LLMs, offering considerable reductions in memory overhead. However, existing SVD-based methods often struggle to effectively mitigate the errors introduced by SVD truncation, leading to a noticeable performance gap when compared to the original models. Furthermore, applying a uniform compression ratio across all transformer layers fails to account for the varying importance of different layers. To address these challenges, we propose AdaSVD, an adaptive SVD-based LLM compression approach. Specifically, AdaSVD introduces adaComp, which adaptively compensates for SVD truncation errors by alternately updating the singular matrices U and V^T. Additionally, AdaSVD introduces adaCR, which adaptively assigns layer-specific compression ratios based on the relative importance of each layer. Extensive experiments across multiple LLM families and evaluation metrics demonstrate that AdaSVD consistently outperforms state-of-the-art (SOTA) SVD-based methods, achieving superior performance with significantly reduced memory requirements. The code and models will be available at https://github.com/ZHITENGLI/AdaSVD.
Abstract:The attention operator is arguably the key distinguishing factor of transformer architectures, which have demonstrated state-of-the-art performance on a variety of tasks. However, transformer attention operators often impose a significant computational burden, with the computational complexity scaling quadratically with the number of tokens. In this work, we propose a novel transformer attention operator whose computational complexity scales linearly with the number of tokens. We derive our network architecture by extending prior work which has shown that a transformer style architecture naturally arises by "white-box" architecture design, where each layer of the network is designed to implement an incremental optimization step of a maximal coding rate reduction objective (MCR$^2$). Specifically, we derive a novel variational form of the MCR$^2$ objective and show that the architecture that results from unrolled gradient descent of this variational objective leads to a new attention module called Token Statistics Self-Attention (TSSA). TSSA has linear computational and memory complexity and radically departs from the typical attention architecture that computes pairwise similarities between tokens. Experiments on vision, language, and long sequence tasks show that simply swapping TSSA for standard self-attention, which we refer to as the Token Statistics Transformer (ToST), achieves competitive performance with conventional transformers while being significantly more computationally efficient and interpretable. Our results also somewhat call into question the conventional wisdom that pairwise similarity style attention mechanisms are critical to the success of transformer architectures. Code will be available at https://github.com/RobinWu218/ToST.
Abstract:With the rapid development of blockchain technology, smart contract security has become a critical challenge. Existing smart contract vulnerability detection methods face three main issues: (1) Insufficient quality of datasets, lacking detailed explanations and precise vulnerability locations. (2) Limited adaptability of large language models (LLMs) to the smart contract domain, as most LLMs are pre-trained on general text data but minimal smart contract-specific data. (3) Lack of high-quality explanations for detected vulnerabilities, as existing methods focus solely on detection without clear explanations. These limitations hinder detection performance and make it harder for developers to understand and fix vulnerabilities quickly, potentially leading to severe financial losses. To address these problems, we propose Smart-LLaMA, an advanced detection method based on the LLaMA language model. First, we construct a comprehensive dataset covering four vulnerability types with labels, detailed explanations, and precise vulnerability locations. Second, we introduce Smart Contract-Specific Continual Pre-Training, using raw smart contract data to enable the LLM to learn smart contract syntax and semantics, enhancing their domain adaptability. Furthermore, we propose Explanation-Guided Fine-Tuning, which fine-tunes the LLM using paired vulnerable code and explanations, enabling both vulnerability detection and reasoned explanations. We evaluate explanation quality through LLM and human evaluation, focusing on Correctness, Completeness, and Conciseness. Experimental results show that Smart-LLaMA outperforms state-of-the-art baselines, with average improvements of 6.49% in F1 score and 3.78% in accuracy, while providing reliable explanations.