Alert button
Picture for Shuicheng Yan

Shuicheng Yan

Alert button

Clarity ChatGPT: An Interactive and Adaptive Processing System for Image Restoration and Enhancement

Nov 20, 2023
Yanyan Wei, Zhao Zhang, Jiahuan Ren, Xiaogang Xu, Richang Hong, Yi Yang, Shuicheng Yan, Meng Wang

The generalization capability of existing image restoration and enhancement (IRE) methods is constrained by the limited pre-trained datasets, making it difficult to handle agnostic inputs such as different degradation levels and scenarios beyond their design scopes. Moreover, they are not equipped with interactive mechanisms to consider user preferences or feedback, and their end-to-end settings cannot provide users with more choices. Faced with the above-mentioned IRE method's limited performance and insufficient interactivity, we try to solve it from the engineering and system framework levels. Specifically, we propose Clarity ChatGPT-a transformative system that combines the conversational intelligence of ChatGPT with multiple IRE methods. Clarity ChatGPT can automatically detect image degradation types and select appropriate IRE methods to restore images, or iteratively generate satisfactory results based on user feedback. Its innovative features include a CLIP-powered detector for accurate degradation classification, no-reference image quality evaluation for performance evaluation, region-specific processing for precise enhancements, and advanced fusion techniques for optimal restoration results. Clarity ChatGPT marks a significant advancement in integrating language and vision, enhancing image-text interactions, and providing a robust, high-performance IRE solution. Our case studies demonstrate that Clarity ChatGPT effectively improves the generalization and interaction capabilities in the IRE, and also fills the gap in the low-level domain of the existing vision-language model.

Viaarxiv icon

Instant3D: Instant Text-to-3D Generation

Nov 14, 2023
Ming Li, Pan Zhou, Jia-Wei Liu, Jussi Keppo, Min Lin, Shuicheng Yan, Xiangyu Xu

Text-to-3D generation, which aims to synthesize vivid 3D objects from text prompts, has attracted much attention from the computer vision community. While several existing works have achieved impressive results for this task, they mainly rely on a time-consuming optimization paradigm. Specifically, these methods optimize a neural field from scratch for each text prompt, taking approximately one hour or more to generate one object. This heavy and repetitive training cost impedes their practical deployment. In this paper, we propose a novel framework for fast text-to-3D generation, dubbed Instant3D. Once trained, Instant3D is able to create a 3D object for an unseen text prompt in less than one second with a single run of a feedforward network. We achieve this remarkable speed by devising a new network that directly constructs a 3D triplane from a text prompt. The core innovation of our Instant3D lies in our exploration of strategies to effectively inject text conditions into the network. Furthermore, we propose a simple yet effective activation function, the scaled-sigmoid, to replace the original sigmoid function, which speeds up the training convergence by more than ten times. Finally, to address the Janus (multi-head) problem in 3D generation, we propose an adaptive Perp-Neg algorithm that can dynamically adjust its concept negation scales according to the severity of the Janus problem during training, effectively reducing the multi-head effect. Extensive experiments on a wide variety of benchmark datasets demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods both qualitatively and quantitatively, while achieving significantly better efficiency. The project page is at https://ming1993li.github.io/Instant3DProj.

* Project page: https://ming1993li.github.io/Instant3DProj 
Viaarxiv icon

Towards Garment Sewing Pattern Reconstruction from a Single Image

Nov 07, 2023
Lijuan Liu, Xiangyu Xu, Zhijie Lin, Jiabin Liang, Shuicheng Yan

Garment sewing pattern represents the intrinsic rest shape of a garment, and is the core for many applications like fashion design, virtual try-on, and digital avatars. In this work, we explore the challenging problem of recovering garment sewing patterns from daily photos for augmenting these applications. To solve the problem, we first synthesize a versatile dataset, named SewFactory, which consists of around 1M images and ground-truth sewing patterns for model training and quantitative evaluation. SewFactory covers a wide range of human poses, body shapes, and sewing patterns, and possesses realistic appearances thanks to the proposed human texture synthesis network. Then, we propose a two-level Transformer network called Sewformer, which significantly improves the sewing pattern prediction performance. Extensive experiments demonstrate that the proposed framework is effective in recovering sewing patterns and well generalizes to casually-taken human photos. Code, dataset, and pre-trained models are available at: https://sewformer.github.io.

* ACM Transactions on Graphics (SIGGRAPH Asia) 2023; Project page at: https://sewformer.github.io 
Viaarxiv icon

Gaussian Mixture Solvers for Diffusion Models

Nov 02, 2023
Hanzhong Guo, Cheng Lu, Fan Bao, Tianyu Pang, Shuicheng Yan, Chao Du, Chongxuan Li

Recently, diffusion models have achieved great success in generative tasks. Sampling from diffusion models is equivalent to solving the reverse diffusion stochastic differential equations (SDEs) or the corresponding probability flow ordinary differential equations (ODEs). In comparison, SDE-based solvers can generate samples of higher quality and are suited for image translation tasks like stroke-based synthesis. During inference, however, existing SDE-based solvers are severely constrained by the efficiency-effectiveness dilemma. Our investigation suggests that this is because the Gaussian assumption in the reverse transition kernel is frequently violated (even in the case of simple mixture data) given a limited number of discretization steps. To overcome this limitation, we introduce a novel class of SDE-based solvers called \emph{Gaussian Mixture Solvers (GMS)} for diffusion models. Our solver estimates the first three-order moments and optimizes the parameters of a Gaussian mixture transition kernel using generalized methods of moments in each step during sampling. Empirically, our solver outperforms numerous SDE-based solvers in terms of sample quality in image generation and stroke-based synthesis in various diffusion models, which validates the motivation and effectiveness of GMS. Our code is available at https://github.com/Guohanzhong/GMS.

* NeurIPS 2023 
Viaarxiv icon

Skywork: A More Open Bilingual Foundation Model

Oct 30, 2023
Tianwen Wei, Liang Zhao, Lichang Zhang, Bo Zhu, Lijie Wang, Haihua Yang, Biye Li, Cheng Cheng, Weiwei Lü, Rui Hu, Chenxia Li, Liu Yang, Xilin Luo, Xuejie Wu, Lunan Liu, Wenjun Cheng, Peng Cheng, Jianhao Zhang, Xiaoyu Zhang, Lei Lin, Xiaokun Wang, Yutuan Ma, Chuanhai Dong, Yanqi Sun, Yifu Chen, Yongyi Peng, Xiaojuan Liang, Shuicheng Yan, Han Fang, Yahui Zhou

In this technical report, we present Skywork-13B, a family of large language models (LLMs) trained on a corpus of over 3.2 trillion tokens drawn from both English and Chinese texts. This bilingual foundation model is the most extensively trained and openly published LLMs of comparable size to date. We introduce a two-stage training methodology using a segmented corpus, targeting general purpose training and then domain-specific enhancement training, respectively. We show that our model not only excels on popular benchmarks, but also achieves \emph{state of the art} performance in Chinese language modeling on diverse domains. Furthermore, we propose a novel leakage detection method, demonstrating that test data contamination is a pressing issue warranting further investigation by the LLM community. To spur future research, we release Skywork-13B along with checkpoints obtained during intermediate stages of the training process. We are also releasing part of our SkyPile corpus, a collection of over 150 billion tokens of web text, which is the largest high quality open Chinese pre-training corpus to date. We hope Skywork-13B and our open corpus will serve as a valuable open-source resource to democratize access to high-quality LLMs.

Viaarxiv icon

ScaleLong: Towards More Stable Training of Diffusion Model via Scaling Network Long Skip Connection

Oct 20, 2023
Zhongzhan Huang, Pan Zhou, Shuicheng Yan, Liang Lin

In diffusion models, UNet is the most popular network backbone, since its long skip connects (LSCs) to connect distant network blocks can aggregate long-distant information and alleviate vanishing gradient. Unfortunately, UNet often suffers from unstable training in diffusion models which can be alleviated by scaling its LSC coefficients smaller. However, theoretical understandings of the instability of UNet in diffusion models and also the performance improvement of LSC scaling remain absent yet. To solve this issue, we theoretically show that the coefficients of LSCs in UNet have big effects on the stableness of the forward and backward propagation and robustness of UNet. Specifically, the hidden feature and gradient of UNet at any layer can oscillate and their oscillation ranges are actually large which explains the instability of UNet training. Moreover, UNet is also provably sensitive to perturbed input, and predicts an output distant from the desired output, yielding oscillatory loss and thus oscillatory gradient. Besides, we also observe the theoretical benefits of the LSC coefficient scaling of UNet in the stableness of hidden features and gradient and also robustness. Finally, inspired by our theory, we propose an effective coefficient scaling framework ScaleLong that scales the coefficients of LSC in UNet and better improves the training stability of UNet. Experimental results on four famous datasets show that our methods are superior to stabilize training and yield about 1.5x training acceleration on different diffusion models with UNet or UViT backbones. Code: https://github.com/sail-sg/ScaleLong

* accepted by NeurIPS 2023 
Viaarxiv icon

Heterogenous Memory Augmented Neural Networks

Oct 17, 2023
Zihan Qiu, Zhen Liu, Shuicheng Yan, Shanghang Zhang, Jie Fu

It has been shown that semi-parametric methods, which combine standard neural networks with non-parametric components such as external memory modules and data retrieval, are particularly helpful in data scarcity and out-of-distribution (OOD) scenarios. However, existing semi-parametric methods mostly depend on independent raw data points - this strategy is difficult to scale up due to both high computational costs and the incapacity of current attention mechanisms with a large number of tokens. In this paper, we introduce a novel heterogeneous memory augmentation approach for neural networks which, by introducing learnable memory tokens with attention mechanism, can effectively boost performance without huge computational overhead. Our general-purpose method can be seamlessly combined with various backbones (MLP, CNN, GNN, and Transformer) in a plug-and-play manner. We extensively evaluate our approach on various image and graph-based tasks under both in-distribution (ID) and OOD conditions and show its competitive performance against task-specific state-of-the-art methods. Code is available at \url{https://github.com/qiuzh20/HMA}.

Viaarxiv icon

DiffDance: Cascaded Human Motion Diffusion Model for Dance Generation

Aug 05, 2023
Qiaosong Qi, Le Zhuo, Aixi Zhang, Yue Liao, Fei Fang, Si Liu, Shuicheng Yan

When hearing music, it is natural for people to dance to its rhythm. Automatic dance generation, however, is a challenging task due to the physical constraints of human motion and rhythmic alignment with target music. Conventional autoregressive methods introduce compounding errors during sampling and struggle to capture the long-term structure of dance sequences. To address these limitations, we present a novel cascaded motion diffusion model, DiffDance, designed for high-resolution, long-form dance generation. This model comprises a music-to-dance diffusion model and a sequence super-resolution diffusion model. To bridge the gap between music and motion for conditional generation, DiffDance employs a pretrained audio representation learning model to extract music embeddings and further align its embedding space to motion via contrastive loss. During training our cascaded diffusion model, we also incorporate multiple geometric losses to constrain the model outputs to be physically plausible and add a dynamic loss weight that adaptively changes over diffusion timesteps to facilitate sample diversity. Through comprehensive experiments performed on the benchmark dataset AIST++, we demonstrate that DiffDance is capable of generating realistic dance sequences that align effectively with the input music. These results are comparable to those achieved by state-of-the-art autoregressive methods.

* Accepted at ACM MM 2023 
Viaarxiv icon

SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning

Aug 03, 2023
Keyu Duan, Qian Liu, Tat-Seng Chua, Shuicheng Yan, Wei Tsang Ooi, Qizhe Xie, Junxian He

Figure 1 for SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning
Figure 2 for SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning
Figure 3 for SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning
Figure 4 for SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning

Textual graphs (TGs) are graphs whose nodes correspond to text (sentences or documents), which are widely prevalent. The representation learning of TGs involves two stages: (i) unsupervised feature extraction and (ii) supervised graph representation learning. In recent years, extensive efforts have been devoted to the latter stage, where Graph Neural Networks (GNNs) have dominated. However, the former stage for most existing graph benchmarks still relies on traditional feature engineering techniques. More recently, with the rapid development of language models (LMs), researchers have focused on leveraging LMs to facilitate the learning of TGs, either by jointly training them in a computationally intensive framework (merging the two stages), or designing complex self-supervised training tasks for feature extraction (enhancing the first stage). In this work, we present SimTeG, a frustratingly Simple approach for Textual Graph learning that does not innovate in frameworks, models, and tasks. Instead, we first perform supervised parameter-efficient fine-tuning (PEFT) on a pre-trained LM on the downstream task, such as node classification. We then generate node embeddings using the last hidden states of finetuned LM. These derived features can be further utilized by any GNN for training on the same task. We evaluate our approach on two fundamental graph representation learning tasks: node classification and link prediction. Through extensive experiments, we show that our approach significantly improves the performance of various GNNs on multiple graph benchmarks.

* 9 pages, 3 figures 
Viaarxiv icon

Offline Prioritized Experience Replay

Jun 08, 2023
Yang Yue, Bingyi Kang, Xiao Ma, Gao Huang, Shiji Song, Shuicheng Yan

Figure 1 for Offline Prioritized Experience Replay
Figure 2 for Offline Prioritized Experience Replay
Figure 3 for Offline Prioritized Experience Replay
Figure 4 for Offline Prioritized Experience Replay

Offline reinforcement learning (RL) is challenged by the distributional shift problem. To address this problem, existing works mainly focus on designing sophisticated policy constraints between the learned policy and the behavior policy. However, these constraints are applied equally to well-performing and inferior actions through uniform sampling, which might negatively affect the learned policy. To alleviate this issue, we propose Offline Prioritized Experience Replay (OPER), featuring a class of priority functions designed to prioritize highly-rewarding transitions, making them more frequently visited during training. Through theoretical analysis, we show that this class of priority functions induce an improved behavior policy, and when constrained to this improved policy, a policy-constrained offline RL algorithm is likely to yield a better solution. We develop two practical strategies to obtain priority weights by estimating advantages based on a fitted value network (OPER-A) or utilizing trajectory returns (OPER-R) for quick computation. OPER is a plug-and-play component for offline RL algorithms. As case studies, we evaluate OPER on five different algorithms, including BC, TD3+BC, Onestep RL, CQL, and IQL. Extensive experiments demonstrate that both OPER-A and OPER-R significantly improve the performance for all baseline methods. Codes and priority weights are availiable at https://github.com/sail-sg/OPER.

* preprint 
Viaarxiv icon