Abstract:Online shopping platforms, such as Amazon, offer services to billions of people worldwide. Unlike web search or other search engines, product search engines have their unique characteristics, primarily featuring short queries which are mostly a combination of product attributes and structured product search space. The uniqueness of product search underscores the crucial importance of the query understanding component. However, there are limited studies focusing on exploring this impact within real-world product search engines. In this work, we aim to bridge this gap by conducting a comprehensive study and sharing our year-long journey investigating how the query understanding service impacts Amazon Product Search. Firstly, we explore how query understanding-based ranking features influence the ranking process. Next, we delve into how the query understanding system contributes to understanding the performance of a ranking model. Building on the insights gained from our study on the evaluation of the query understanding-based ranking model, we propose a query understanding-based multi-task learning framework for ranking. We present our studies and investigations using the real-world system on Amazon Search.
Abstract:What target labels are most effective for graph neural network (GNN) training? In some applications where GNNs excel-like drug design or fraud detection, labeling new instances is expensive. We develop a data-efficient active sampling framework, ScatterSample, to train GNNs under an active learning setting. ScatterSample employs a sampling module termed DiverseUncertainty to collect instances with large uncertainty from different regions of the sample space for labeling. To ensure diversification of the selected nodes, DiverseUncertainty clusters the high uncertainty nodes and selects the representative nodes from each cluster. Our ScatterSample algorithm is further supported by rigorous theoretical analysis demonstrating its advantage compared to standard active sampling methods that aim to simply maximize the uncertainty and not diversify the samples. In particular, we show that ScatterSample is able to efficiently reduce the model uncertainty over the whole sample space. Our experiments on five datasets show that ScatterSample significantly outperforms the other GNN active learning baselines, specifically it reduces the sampling cost by up to 50% while achieving the same test accuracy.
Abstract:Federated learning enables many local devices to train a deep learning model jointly without sharing the local data. Currently, most of federated training schemes learns a global model by averaging the parameters of local models. However, most of these training schemes suffer from high communication cost resulted from transmitting full local model parameters. Moreover, directly averaging model parameters leads to a significant performance degradation, due to the class-imbalanced non-iid data on different devices. Especially for the real life federated learning tasks involving extreme classification, (1) communication becomes the main bottleneck since the model size increases proportionally to the number of output classes; (2) extreme classification (such as user recommendation) normally have extremely imbalanced classes and heterogeneous data on different devices. To overcome this problem, we propose federated multiple label hashing (FedMLH), which leverages label hashing to simultaneously reduce the model size (up to 3.40X decrease) with communication cost (up to 18.75X decrease) and achieves significant better accuracy (up to 35.5%} relative accuracy improvement) and faster convergence rate (up to 5.5X increase) for free on the federated extreme classification tasks compared to federated average algorithm.
Abstract:Recent work suggests improving the performance of Bloom filter by incorporating a machine learning model as a binary classifier. However, such learned Bloom filter does not take full advantage of the predicted probability scores. We proposed new algorithms that generalize the learned Bloom filter by using the complete spectrum of the scores regions. We proved our algorithms have lower False Positive Rate (FPR) and memory usage compared with the existing approaches to learned Bloom filter. We also demonstrated the improved performance of our algorithms on real-world datasets.
Abstract:Normalization layers are widely used in deep neural networks to stabilize training. In this paper, we consider the training of convolutional neural networks with gradient descent on a single training example. This optimization problem arises in recent approaches for solving inverse problems such as the deep image prior or the deep decoder. We show that for this setup, channel normalization, which centers and normalizes each channel individually, avoids vanishing gradients, whereas, without normalization, gradients vanish which prevents efficient optimization. This effect prevails in deep single-channel linear convolutional networks, and we show that without channel normalization, gradient descent takes at least exponentially many steps to come close to an optimum. Contrary, with channel normalization, the gradients remain bounded, thus avoiding exploding gradients.