Harbin Institute of Technology, Shenzhen, Chinese University of Hong Kong
Abstract:Robotic bin packing aids in a wide range of real-world scenarios such as e-commerce and warehouses. Yet, existing works focus mainly on considering the shape of objects to optimize packing compactness and neglect object properties such as fragility, edibility, and chemistry that humans typically consider when packing objects. This paper presents OPA-Pack (Object-Property-Aware Packing framework), the first framework that equips the robot with object property considerations in planning the object packing. Technical-wise, we develop a novel object property recognition scheme with retrieval-augmented generation and chain-of-thought reasoning, and build a dataset with object property annotations for 1,032 everyday objects. Also, we formulate OPA-Net, aiming to jointly separate incompatible object pairs and reduce pressure on fragile objects, while compacting the packing. Further, OPA-Net consists of a property embedding layer to encode the property of candidate objects to be packed, together with a fragility heightmap and an avoidance heightmap to keep track of the packed objects. Then, we design a reward function and adopt a deep Q-learning scheme to train OPA-Net. Experimental results manifest that OPA-Pack greatly improves the accuracy of separating incompatible object pairs (from 52% to 95%) and largely reduces pressure on fragile objects (by 29.4%), while maintaining good packing compactness. Besides, we demonstrate the effectiveness of OPA-Pack on a real packing platform, showcasing its practicality in real-world scenarios.
Abstract:Recent Large Multimodal Models have demonstrated remarkable reasoning capabilities, especially in solving complex mathematical problems and realizing accurate spatial perception. Our key insight is that these emerging abilities can naturally extend to robotic manipulation by enabling LMMs to directly infer the next goal in language via reasoning, rather than relying on a separate action head. However, this paradigm meets two main challenges: i) How to make LMMs understand the spatial action space, and ii) How to fully exploit the reasoning capacity of LMMs in solving these tasks. To tackle the former challenge, we propose a novel task formulation, which inputs the current states of object parts and the gripper, and reformulates rotation by a new axis representation instead of traditional Euler angles. This representation is more compatible with spatial reasoning and easier to interpret within a unified language space. For the latter challenge, we design a pipeline to utilize cutting-edge LMMs to generate a small but high-quality reasoning dataset of multi-round dialogues that successfully solve manipulation tasks for supervised fine-tuning. Then, we perform reinforcement learning by trial-and-error interactions in simulation to further enhance the model's reasoning abilities for robotic manipulation. Our resulting reasoning model built upon a 7B backbone, named ReasonManip, demonstrates three notable advantages driven by its system-2 level reasoning capabilities: i) exceptional generalizability to out-of-distribution environments, objects, and tasks; ii) inherent sim-to-real transfer ability enabled by the unified language representation shared across domains; iii) transparent interpretability connecting high-level reasoning and low-level control. Extensive experiments demonstrate the effectiveness of the proposed paradigm and its potential to advance LMM-driven robotic manipulation.
Abstract:Reconstructing 3D scenes from monocular surgical videos can enhance surgeon's perception and therefore plays a vital role in various computer-assisted surgery tasks. However, achieving scale-consistent reconstruction remains an open challenge due to inherent issues in endoscopic videos, such as dynamic deformations and textureless surfaces. Despite recent advances, current methods either rely on calibration or instrument priors to estimate scale, or employ SfM-like multi-stage pipelines, leading to error accumulation and requiring offline optimization. In this paper, we present Endo3R, a unified 3D foundation model for online scale-consistent reconstruction from monocular surgical video, without any priors or extra optimization. Our model unifies the tasks by predicting globally aligned pointmaps, scale-consistent video depths, and camera parameters without any offline optimization. The core contribution of our method is expanding the capability of the recent pairwise reconstruction model to long-term incremental dynamic reconstruction by an uncertainty-aware dual memory mechanism. The mechanism maintains history tokens of both short-term dynamics and long-term spatial consistency. Notably, to tackle the highly dynamic nature of surgical scenes, we measure the uncertainty of tokens via Sampson distance and filter out tokens with high uncertainty. Regarding the scarcity of endoscopic datasets with ground-truth depth and camera poses, we further devise a self-supervised mechanism with a novel dynamics-aware flow loss. Abundant experiments on SCARED and Hamlyn datasets demonstrate our superior performance in zero-shot surgical video depth prediction and camera pose estimation with online efficiency. Project page: https://wrld.github.io/Endo3R/.
Abstract:Accurate and robust simultaneous localization and mapping (SLAM) is crucial for autonomous mobile systems, typically achieved by leveraging the geometric features of the environment. Incorporating semantics provides a richer scene representation that not only enhances localization accuracy in SLAM but also enables advanced cognitive functionalities for downstream navigation and planning tasks. Existing point-wise semantic LiDAR SLAM methods often suffer from poor efficiency and generalization, making them less robust in diverse real-world scenarios. In this paper, we propose a semantic graph-enhanced SLAM framework, named SG-SLAM, which effectively leverages the geometric, semantic, and topological characteristics inherent in environmental structures. The semantic graph serves as a fundamental component that facilitates critical functionalities of SLAM, including robust relocalization during odometry failures, accurate loop closing, and semantic graph map construction. Our method employs a dual-threaded architecture, with one thread dedicated to online odometry and relocalization, while the other handles loop closure, pose graph optimization, and map update. This design enables our method to operate in real time and generate globally consistent semantic graph maps and point cloud maps. We extensively evaluate our method across the KITTI, MulRAN, and Apollo datasets, and the results demonstrate its superiority compared to state-of-the-art methods. Our method has been released at https://github.com/nubot-nudt/SG-SLAM.
Abstract:In this paper, we introduce a novel image-goal navigation approach, named RFSG. Our focus lies in leveraging the fine-grained connections between goals, observations, and the environment within limited image data, all the while keeping the navigation architecture simple and lightweight. To this end, we propose the spatial-channel attention mechanism, enabling the network to learn the importance of multi-dimensional features to fuse the goal and observation features. In addition, a selfdistillation mechanism is incorporated to further enhance the feature representation capabilities. Given that the navigation task needs surrounding environmental information for more efficient navigation, we propose an image scene graph to establish feature associations at both the image and object levels, effectively encoding the surrounding scene information. Crossscene performance validation was conducted on the Gibson and HM3D datasets, and the proposed method achieved stateof-the-art results among mainstream methods, with a speed of up to 53.5 frames per second on an RTX3080. This contributes to the realization of end-to-end image-goal navigation in realworld scenarios. The implementation and model of our method have been released at: https://github.com/nubot-nudt/RFSG.
Abstract:This work presents the application of reinforcement learning to improve the performance of a highly dynamic hopping system with a parallel mechanism. Unlike serial mechanisms, parallel mechanisms can not be accurately simulated due to the complexity of their kinematic constraints and closed-loop structures. Besides, learning to hop suffers from prolonged aerial phase and the sparse nature of the rewards. To address them, we propose a learning framework to encode long-history feedback to account for the under-actuation brought by the prolonged aerial phase. In the proposed framework, we also introduce a simplified serial configuration for the parallel design to avoid directly simulating parallel structure during the training. A torque-level conversion is designed to deal with the parallel-serial conversion to handle the sim-to-real issue. Simulation and hardware experiments have been conducted to validate this framework.
Abstract:Photometric bundle adjustment (PBA) is widely used in estimating the camera pose and 3D geometry by assuming a Lambertian world. However, the assumption of photometric consistency is often violated since the non-diffuse reflection is common in real-world environments. The photometric inconsistency significantly affects the reliability of existing PBA methods. To solve this problem, we propose a novel physically-based PBA method. Specifically, we introduce the physically-based weights regarding material, illumination, and light path. These weights distinguish the pixel pairs with different levels of photometric inconsistency. We also design corresponding models for material estimation based on sequential images and illumination estimation based on point clouds. In addition, we establish the first SLAM-related dataset of non-Lambertian scenes with complete ground truth of illumination and material. Extensive experiments demonstrated that our PBA method outperforms existing approaches in accuracy.
Abstract:Observing that the key for robotic action planning is to understand the target-object motion when its associated part is manipulated by the end effector, we propose to generate the 3D object-part scene flow and extract its transformations to solve the action trajectories for diverse embodiments. The advantage of our approach is that it derives the robot action explicitly from object motion prediction, yielding a more robust policy by understanding the object motions. Also, beyond policies trained on embodiment-centric data, our method is embodiment-agnostic, generalizable across diverse embodiments, and being able to learn from human demonstrations. Our method comprises three components: an object-part predictor to locate the part for the end effector to manipulate, an RGBD video generator to predict future RGBD videos, and a trajectory planner to extract embodiment-agnostic transformation sequences and solve the trajectory for diverse embodiments. Trained on videos even without trajectory data, our method still outperforms existing works significantly by 27.7% and 26.2% on the prevailing virtual environments MetaWorld and Franka-Kitchen, respectively. Furthermore, we conducted real-world experiments, showing that our policy, trained only with human demonstration, can be deployed to various embodiments.
Abstract:Model Predictive Control (MPC) relies heavily on the robot model for its control law. However, a gap always exists between the reduced-order control model with uncertainties and the real robot, which degrades its performance. To address this issue, we propose the controller of integrating a data-driven error model into traditional MPC for quadruped robots. Our approach leverages real-world data from sensors to compensate for defects in the control model. Specifically, we employ the Autoregressive Moving Average Vector (ARMAV) model to construct the state error model of the quadruped robot using data. The predicted state errors are then used to adjust the predicted future robot states generated by MPC. By such an approach, our proposed controller can provide more accurate inputs to the system, enabling it to achieve desired states even in the presence of model parameter inaccuracies or disturbances. The proposed controller exhibits the capability to partially eliminate the disparity between the model and the real-world robot, thereby enhancing the locomotion performance of quadruped robots. We validate our proposed method through simulations and real-world experimental trials on a large-size quadruped robot that involves carrying a 20 kg un-modeled payload (84% of body weight).
Abstract:Surgical phase recognition is crucial for enhancing the efficiency and safety of computer-assisted interventions. One of the fundamental challenges involves modeling the long-distance temporal relationships present in surgical videos. Inspired by the recent success of Mamba, a state space model with linear scalability in sequence length, this paper presents SR-Mamba, a novel attention-free model specifically tailored to meet the challenges of surgical phase recognition. In SR-Mamba, we leverage a bidirectional Mamba decoder to effectively model the temporal context in overlong sequences. Moreover, the efficient optimization of the proposed Mamba decoder facilitates single-step neural network training, eliminating the need for separate training steps as in previous works. This single-step training approach not only simplifies the training process but also ensures higher accuracy, even with a lighter spatial feature extractor. Our SR-Mamba establishes a new benchmark in surgical video analysis by demonstrating state-of-the-art performance on the Cholec80 and CATARACTS Challenge datasets. The code is accessible at https://github.com/rcao-hk/SR-Mamba.