Abstract:End-to-end automatic speech recognition systems often fail to transcribe domain-specific named entities, causing catastrophic failures in downstream tasks. Numerous fast and lightweight named entity correction (NEC) models have been proposed in recent years. These models, mainly leveraging phonetic-level edit distance algorithms, have shown impressive performances. However, when the forms of the wrongly-transcribed words(s) and the ground-truth entity are significantly different, these methods often fail to locate the wrongly transcribed words in hypothesis, thus limiting their usage. We propose a novel NEC method that utilizes speech sound features to retrieve candidate entities. With speech sound features and candidate entities, we inovatively design a generative method to annotate entity errors in ASR transcripts and replace the text with correct entities. This method is effective in scenarios of word form difference. We test our method using open-source and self-constructed test sets. The results demonstrate that our NEC method can bring significant improvement to entity accuracy. We will open source our self-constructed test set and training data.
Abstract:Monocular and stereo depth estimation offer complementary strengths: monocular methods capture rich contextual priors but lack geometric precision, while stereo approaches leverage epipolar geometry yet struggle with ambiguities such as reflective or textureless surfaces. Despite post-hoc synergies, these paradigms remain largely disjoint in practice. We introduce OmniDepth, a unified framework that bridges both through iterative bidirectional alignment of their latent representations. At its core, a novel cross-attentive alignment mechanism dynamically synchronizes monocular contextual cues with stereo hypothesis representations during stereo reasoning. This mutual alignment resolves stereo ambiguities (e.g., specular surfaces) by injecting monocular structure priors while refining monocular depth with stereo geometry within a single network. Extensive experiments demonstrate state-of-the-art results: \textbf{OmniDepth reduces zero-shot generalization error by $\!>\!40\%$ on Middlebury and ETH3D}, while addressing longstanding failures on transparent and reflective surfaces. By harmonizing multi-view geometry with monocular context, OmniDepth enables robust 3D perception that transcends modality-specific limitations. Codes available at https://github.com/aeolusguan/OmniDepth.
Abstract:Vector Quantized Variational Autoencoders (VQ-VAEs) are fundamental models that compress continuous visual data into discrete tokens. Existing methods have tried to improve the quantization strategy for better reconstruction quality, however, there still exists a large gap between VQ-VAEs and VAEs. To narrow this gap, we propose \NickName, a novel method to augment the representation capability of discrete codebooks, facilitating easier optimization for codebooks and minimizing information loss, thereby enhancing reconstruction quality. Specifically, we propose to retain the latent dimension to preserve encoded features and incorporate a set of sub-codebooks for quantization. Furthermore, we construct comprehensive zero-shot benchmarks featuring resolutions of 512p and 2k to evaluate the reconstruction performance of existing methods rigorously. \NickName~achieves the \textbf{state-of-the-art performance on both ImageNet and $8$ zero-shot benchmarks} across all VQ-VAEs. Notably, compared with SD-VAE, we outperform them on ImageNet significantly, with rFID $\textbf{0.49}$ v.s. $\textbf{0.91}$, and achieve superior PSNR on all zero-shot benchmarks. These results highlight the superiority of \NickName~in reconstruction and pave the way for preserving fidelity in HD image processing tasks. Code will be publicly available at https://github.com/MKJia/MGVQ.
Abstract:Reward models play a critical role in guiding large language models toward outputs that align with human expectations. However, an open challenge remains in effectively utilizing test-time compute to enhance reward model performance. In this work, we introduce Reward Reasoning Models (RRMs), which are specifically designed to execute a deliberate reasoning process before generating final rewards. Through chain-of-thought reasoning, RRMs leverage additional test-time compute for complex queries where appropriate rewards are not immediately apparent. To develop RRMs, we implement a reinforcement learning framework that fosters self-evolved reward reasoning capabilities without requiring explicit reasoning traces as training data. Experimental results demonstrate that RRMs achieve superior performance on reward modeling benchmarks across diverse domains. Notably, we show that RRMs can adaptively exploit test-time compute to further improve reward accuracy. The pretrained reward reasoning models are available at https://huggingface.co/Reward-Reasoning.
Abstract:Reconstructing 3D scenes from monocular surgical videos can enhance surgeon's perception and therefore plays a vital role in various computer-assisted surgery tasks. However, achieving scale-consistent reconstruction remains an open challenge due to inherent issues in endoscopic videos, such as dynamic deformations and textureless surfaces. Despite recent advances, current methods either rely on calibration or instrument priors to estimate scale, or employ SfM-like multi-stage pipelines, leading to error accumulation and requiring offline optimization. In this paper, we present Endo3R, a unified 3D foundation model for online scale-consistent reconstruction from monocular surgical video, without any priors or extra optimization. Our model unifies the tasks by predicting globally aligned pointmaps, scale-consistent video depths, and camera parameters without any offline optimization. The core contribution of our method is expanding the capability of the recent pairwise reconstruction model to long-term incremental dynamic reconstruction by an uncertainty-aware dual memory mechanism. The mechanism maintains history tokens of both short-term dynamics and long-term spatial consistency. Notably, to tackle the highly dynamic nature of surgical scenes, we measure the uncertainty of tokens via Sampson distance and filter out tokens with high uncertainty. Regarding the scarcity of endoscopic datasets with ground-truth depth and camera poses, we further devise a self-supervised mechanism with a novel dynamics-aware flow loss. Abundant experiments on SCARED and Hamlyn datasets demonstrate our superior performance in zero-shot surgical video depth prediction and camera pose estimation with online efficiency. Project page: https://wrld.github.io/Endo3R/.
Abstract:In this paper, we propose a novel strategy defined as Chain-of-Description (CoD) Prompting, tailored for Multi-Modal Large Language Models. This approach involves having the model first provide a detailed description of the multi-modal input before generating an answer to the question. When applied to models such as Qwen2-Audio, Qwen2-VL, and Qwen2.5-VL, CoD Prompting significantly enhances performance compared to standard prompting methods. This is demonstrated by nearly a 4\% improvement in the speech category of the audio benchmark AIR-Bench-Chat and a 5.3\% improvement in the hard-level portion of the vision benchmark MMMU\_Pro. Our ablation study further validates the effectiveness of CoD Prompting.
Abstract:The field of artificial intelligence has witnessed significant advancements in natural language processing, largely attributed to the capabilities of Large Language Models (LLMs). These models form the backbone of Agents designed to address long-context dependencies, particularly in Document-level Machine Translation (DocMT). DocMT presents unique challenges, with quality, consistency, and fluency being the key metrics for evaluation. Existing approaches, such as Doc2Doc and Doc2Sent, either omit sentences or compromise fluency. This paper introduces Doc-Guided Sent2Sent++, an Agent that employs an incremental sentence-level forced decoding strategy \textbf{to ensure every sentence is translated while enhancing the fluency of adjacent sentences.} Our Agent leverages a Doc-Guided Memory, focusing solely on the summary and its translation, which we find to be an efficient approach to maintaining consistency. Through extensive testing across multiple languages and domains, we demonstrate that Sent2Sent++ outperforms other methods in terms of quality, consistency, and fluency. The results indicate that, our approach has achieved significant improvements in metrics such as s-COMET, d-COMET, LTCR-$1_f$, and document-level perplexity (d-ppl). The contributions of this paper include a detailed analysis of current DocMT research, the introduction of the Sent2Sent++ decoding method, the Doc-Guided Memory mechanism, and validation of its effectiveness across languages and domains.
Abstract:With the widespread application of Large Language Models (LLMs) in the field of Natural Language Processing (NLP), enhancing their performance has become a research hotspot. This paper presents a novel multi-prompt ensemble decoding approach designed to bolster the generation quality of LLMs by leveraging the aggregation of outcomes from multiple prompts. Given a unique input $X$, we submit $n$ variations of prompts with $X$ to LLMs in batch mode to decode and derive probability distributions. For each token prediction, we calculate the ensemble probability by averaging the $n$ probability distributions within the batch, utilizing this aggregated probability to generate the token. This technique is dubbed Inner-Batch Ensemble. To facilitate efficient batch inference, we implement a Left-Padding strategy to maintain uniform input lengths across the n prompts. Through extensive experimentation on diverse NLP tasks, including machine translation, code generation, and text simplification, we demonstrate the efficacy of our method in enhancing LLM performance. The results show substantial improvements in BLEU scores, pass@$k$ rates, and LENS metrics over conventional methods.
Abstract:This report outlines our approach for the WMT24 Discourse-Level Literary Translation Task, focusing on the Chinese-English language pair in the Constrained Track. Translating literary texts poses significant challenges due to the nuanced meanings, idiomatic expressions, and intricate narrative structures inherent in such works. To address these challenges, we leveraged the Chinese-Llama2 model, specifically enhanced for this task through a combination of Continual Pre-training (CPT) and Supervised Fine-Tuning (SFT). Our methodology includes a novel Incremental Decoding framework, which ensures that each sentence is translated with consideration of its broader context, maintaining coherence and consistency throughout the text. This approach allows the model to capture long-range dependencies and stylistic elements, producing translations that faithfully preserve the original literary quality. Our experiments demonstrate significant improvements in both sentence-level and document-level BLEU scores, underscoring the effectiveness of our proposed framework in addressing the complexities of document-level literary translation.
Abstract:This article introduces the submission status of the Translation into Low-Resource Languages of Spain task at (WMT 2024) by Huawei Translation Service Center (HW-TSC). We participated in three translation tasks: spanish to aragonese (es-arg), spanish to aranese (es-arn), and spanish to asturian (es-ast). For these three translation tasks, we use training strategies such as multilingual transfer, regularized dropout, forward translation and back translation, labse denoising, transduction ensemble learning and other strategies to neural machine translation (NMT) model based on training deep transformer-big architecture. By using these enhancement strategies, our submission achieved a competitive result in the final evaluation.