Abstract:Training time-series forecasting models presents unique challenges in designing effective learning objectives. Existing methods predominantly utilize the temporal mean squared error, which faces two critical challenges: (1) label autocorrelation, which leads to bias from the label sequence likelihood; (2) excessive amount of tasks, which increases with the forecast horizon and complicates optimization. To address these challenges, we propose Transform-enhanced Direct Forecast (TransDF), which transforms the label sequence into decorrelated components with discriminated significance. Models are trained to align the most significant components, thereby effectively mitigating label autocorrelation and reducing task amount. Extensive experiments demonstrate that TransDF achieves state-of-the-art performance and is compatible with various forecasting models. Code is available at https://anonymous.4open.science/r/TransDF-88CF.
Abstract:Multi-task forecasting has become the standard approach for time-series forecasting (TSF). However, we show that it suffers from an Expressiveness Bottleneck, where predictions at different time steps share the same representation, leading to unavoidable errors even with optimal representations. To address this issue, we propose a two-stage framework: first, pre-train a foundation model for one-step-ahead prediction; then, adapt it using step-specific LoRA modules.This design enables the foundation model to handle any number of forecast steps while avoiding the expressiveness bottleneck. We further introduce the Mixture-of-LoRA (MoLA) model, which employs adaptively weighted LoRA experts to achieve partial parameter sharing across steps. This approach enhances both efficiency and forecasting performance by exploiting interdependencies between forecast steps. Experiments show that MoLA significantly improves model expressiveness and outperforms state-of-the-art time-series forecasting methods. Code is available at https://anonymous.4open.science/r/MoLA-BC92.
Abstract:In this paper, we introduce a novel image-goal navigation approach, named RFSG. Our focus lies in leveraging the fine-grained connections between goals, observations, and the environment within limited image data, all the while keeping the navigation architecture simple and lightweight. To this end, we propose the spatial-channel attention mechanism, enabling the network to learn the importance of multi-dimensional features to fuse the goal and observation features. In addition, a selfdistillation mechanism is incorporated to further enhance the feature representation capabilities. Given that the navigation task needs surrounding environmental information for more efficient navigation, we propose an image scene graph to establish feature associations at both the image and object levels, effectively encoding the surrounding scene information. Crossscene performance validation was conducted on the Gibson and HM3D datasets, and the proposed method achieved stateof-the-art results among mainstream methods, with a speed of up to 53.5 frames per second on an RTX3080. This contributes to the realization of end-to-end image-goal navigation in realworld scenarios. The implementation and model of our method have been released at: https://github.com/nubot-nudt/RFSG.
Abstract:Effective process monitoring is increasingly vital in industrial automation for ensuring operational safety, necessitating both high accuracy and efficiency. Although Transformers have demonstrated success in various fields, their canonical form based on the self-attention mechanism is inadequate for process monitoring due to two primary limitations: (1) the step-wise correlations captured by self-attention mechanism are difficult to capture discriminative patterns in monitoring logs due to the lacking semantics of each step, thus compromising accuracy; (2) the quadratic computational complexity of self-attention hampers efficiency. To address these issues, we propose DeepFilter, a Transformer-style framework for process monitoring. The core innovation is an efficient filtering layer that excel capturing long-term and periodic patterns with reduced complexity. Equipping with the global filtering layer, DeepFilter enhances both accuracy and efficiency, meeting the stringent demands of process monitoring. Experimental results on real-world process monitoring datasets validate DeepFilter's superiority in terms of accuracy and efficiency compared to existing state-of-the-art models.
Abstract:Heterogeneous treatment effect (HTE) estimation from observational data poses significant challenges due to treatment selection bias. Existing methods address this bias by minimizing distribution discrepancies between treatment groups in latent space, focusing on global alignment. However, the fruitful aspect of local proximity, where similar units exhibit similar outcomes, is often overlooked. In this study, we propose Proximity-aware Counterfactual Regression (PCR) to exploit proximity for representation balancing within the HTE estimation context. Specifically, we introduce a local proximity preservation regularizer based on optimal transport to depict the local proximity in discrepancy calculation. Furthermore, to overcome the curse of dimensionality that renders the estimation of discrepancy ineffective, exacerbated by limited data availability for HTE estimation, we develop an informative subspace projector, which trades off minimal distance precision for improved sample complexity. Extensive experiments demonstrate that PCR accurately matches units across different treatment groups, effectively mitigates treatment selection bias, and significantly outperforms competitors. Code is available at https://anonymous.4open.science/status/ncr-B697.
Abstract:Diffusion models (DMs) have gained attention in Missing Data Imputation (MDI), but there remain two long-neglected issues to be addressed: (1). Inaccurate Imputation, which arises from inherently sample-diversification-pursuing generative process of DMs. (2). Difficult Training, which stems from intricate design required for the mask matrix in model training stage. To address these concerns within the realm of numerical tabular datasets, we introduce a novel principled approach termed Kernelized Negative Entropy-regularized Wasserstein gradient flow Imputation (KnewImp). Specifically, based on Wasserstein gradient flow (WGF) framework, we first prove that issue (1) stems from the cost functionals implicitly maximized in DM-based MDI are equivalent to the MDI's objective plus diversification-promoting non-negative terms. Based on this, we then design a novel cost functional with diversification-discouraging negative entropy and derive our KnewImp approach within WGF framework and reproducing kernel Hilbert space. After that, we prove that the imputation procedure of KnewImp can be derived from another cost functional related to the joint distribution, eliminating the need for the mask matrix and hence naturally addressing issue (2). Extensive experiments demonstrate that our proposed KnewImp approach significantly outperforms existing state-of-the-art methods.
Abstract:Time series modeling is uniquely challenged by the presence of autocorrelation in both historical and label sequences. Current research predominantly focuses on handling autocorrelation within the historical sequence but often neglects its presence in the label sequence. Specifically, emerging forecast models mainly conform to the direct forecast (DF) paradigm, generating multi-step forecasts under the assumption of conditional independence within the label sequence. This assumption disregards the inherent autocorrelation in the label sequence, thereby limiting the performance of DF-based models. In response to this gap, we introduce the Frequency-enhanced Direct Forecast (FreDF), which bypasses the complexity of label autocorrelation by learning to forecast in the frequency domain. Our experiments demonstrate that FreDF substantially outperforms existing state-of-the-art methods including iTransformer and is compatible with a variety of forecast models.
Abstract:The ever-increasing need for spectrum for mobile broadband systems has led to the recent allocation of spectral resources for International Mobile Telecommunication (IMT) services in the upper mid band (6.425 - 7.125 GHz) at the World Radio Conference (WRC-23) as well as to the creation of an agenda item on identifying future IMT bands in the frequency region 7.125 - 10.5 GHz at WRC-27. The severity of the impact of these frequency allocations on existing UWB systems, which have been using this part of the spectrum as a sub-secondary user for many years, is still subject to controversial discussions. This paper contributes a study on the impact of IMT on a real-world vehicular UWB keyless entry system to this discussion. It is shown that both the car's wireless on-board unit and a nearby basestation may drastically affect the system's performance.
Abstract:Estimating conditional average treatment effect from observational data is highly challenging due to the existence of treatment selection bias. Prevalent methods mitigate this issue by aligning distributions of different treatment groups in the latent space. However, there are two critical problems that these methods fail to address: (1) mini-batch sampling effects (MSE), which causes misalignment in non-ideal mini-batches with outcome imbalance and outliers; (2) unobserved confounder effects (UCE), which results in inaccurate discrepancy calculation due to the neglect of unobserved confounders. To tackle these problems, we propose a principled approach named Entire Space CounterFactual Regression (ESCFR), which is a new take on optimal transport in the context of causality. Specifically, based on the framework of stochastic optimal transport, we propose a relaxed mass-preserving regularizer to address the MSE issue and design a proximal factual outcome regularizer to handle the UCE issue. Extensive experiments demonstrate that our proposed ESCFR can successfully tackle the treatment selection bias and achieve significantly better performance than state-of-the-art methods.
Abstract:Time-Series Forecasting based on Cumulative Data (TSFCD) is a crucial problem in decision-making across various industrial scenarios. However, existing time-series forecasting methods often overlook two important characteristics of cumulative data, namely monotonicity and irregularity, which limit their practical applicability. To address this limitation, we propose a principled approach called Monotonic neural Ordinary Differential Equation (MODE) within the framework of neural ordinary differential equations. By leveraging MODE, we are able to effectively capture and represent the monotonicity and irregularity in practical cumulative data. Through extensive experiments conducted in a bonus allocation scenario, we demonstrate that MODE outperforms state-of-the-art methods, showcasing its ability to handle both monotonicity and irregularity in cumulative data and delivering superior forecasting performance.