Abstract:Large language models (LLMs) have demonstrated strong potential in clinical question answering, with recent multi-agent frameworks further improving diagnostic accuracy via collaborative reasoning. However, we identify a recurring issue of Silent Agreement, where agents prematurely converge on diagnoses without sufficient critical analysis, particularly in complex or ambiguous cases. We present a new concept called Catfish Agent, a role-specialized LLM designed to inject structured dissent and counter silent agreement. Inspired by the ``catfish effect'' in organizational psychology, the Catfish Agent is designed to challenge emerging consensus to stimulate deeper reasoning. We formulate two mechanisms to encourage effective and context-aware interventions: (i) a complexity-aware intervention that modulates agent engagement based on case difficulty, and (ii) a tone-calibrated intervention articulated to balance critique and collaboration. Evaluations on nine medical Q&A and three medical VQA benchmarks show that our approach consistently outperforms both single- and multi-agent LLMs frameworks, including leading commercial models such as GPT-4o and DeepSeek-R1.
Abstract:Training large language models (LLMs) as interactive agents for controlling graphical user interfaces (GUIs) presents a unique challenge to optimize long-horizon action sequences with multimodal feedback from complex environments. While recent works have advanced multi-turn reinforcement learning (RL) for reasoning and tool-using capabilities in LLMs, their application to GUI-based agents remains relatively underexplored due to the difficulty of sparse rewards, delayed feedback, and high rollout costs. In this paper, we investigate end-to-end policy optimization for vision-language-based GUI agents with the aim of improving performance on complex, long-horizon computer tasks. We propose Agentic Replay Policy Optimization (ARPO), an end-to-end RL approach that augments Group Relative Policy Optimization (GRPO) with a replay buffer to reuse the successful experience across training iterations. To further stabilize the training process, we propose a task selection strategy that filters tasks based on baseline agent performance, allowing the agent to focus on learning from informative interactions. Additionally, we compare ARPO with offline preference optimization approaches, highlighting the advantages of policy-based methods in GUI environments. Experiments on the OSWorld benchmark demonstrate that ARPO achieves competitive results, establishing a new performance baseline for LLM-based GUI agents trained via reinforcement learning. Our findings underscore the effectiveness of reinforcement learning for training multi-turn, vision-language GUI agents capable of managing complex real-world UI interactions. Codes and models:https://github.com/dvlab-research/ARPO.git.
Abstract:Robotic bin packing aids in a wide range of real-world scenarios such as e-commerce and warehouses. Yet, existing works focus mainly on considering the shape of objects to optimize packing compactness and neglect object properties such as fragility, edibility, and chemistry that humans typically consider when packing objects. This paper presents OPA-Pack (Object-Property-Aware Packing framework), the first framework that equips the robot with object property considerations in planning the object packing. Technical-wise, we develop a novel object property recognition scheme with retrieval-augmented generation and chain-of-thought reasoning, and build a dataset with object property annotations for 1,032 everyday objects. Also, we formulate OPA-Net, aiming to jointly separate incompatible object pairs and reduce pressure on fragile objects, while compacting the packing. Further, OPA-Net consists of a property embedding layer to encode the property of candidate objects to be packed, together with a fragility heightmap and an avoidance heightmap to keep track of the packed objects. Then, we design a reward function and adopt a deep Q-learning scheme to train OPA-Net. Experimental results manifest that OPA-Pack greatly improves the accuracy of separating incompatible object pairs (from 52% to 95%) and largely reduces pressure on fragile objects (by 29.4%), while maintaining good packing compactness. Besides, we demonstrate the effectiveness of OPA-Pack on a real packing platform, showcasing its practicality in real-world scenarios.
Abstract:Recent Large Multimodal Models have demonstrated remarkable reasoning capabilities, especially in solving complex mathematical problems and realizing accurate spatial perception. Our key insight is that these emerging abilities can naturally extend to robotic manipulation by enabling LMMs to directly infer the next goal in language via reasoning, rather than relying on a separate action head. However, this paradigm meets two main challenges: i) How to make LMMs understand the spatial action space, and ii) How to fully exploit the reasoning capacity of LMMs in solving these tasks. To tackle the former challenge, we propose a novel task formulation, which inputs the current states of object parts and the gripper, and reformulates rotation by a new axis representation instead of traditional Euler angles. This representation is more compatible with spatial reasoning and easier to interpret within a unified language space. For the latter challenge, we design a pipeline to utilize cutting-edge LMMs to generate a small but high-quality reasoning dataset of multi-round dialogues that successfully solve manipulation tasks for supervised fine-tuning. Then, we perform reinforcement learning by trial-and-error interactions in simulation to further enhance the model's reasoning abilities for robotic manipulation. Our resulting reasoning model built upon a 7B backbone, named ReasonManip, demonstrates three notable advantages driven by its system-2 level reasoning capabilities: i) exceptional generalizability to out-of-distribution environments, objects, and tasks; ii) inherent sim-to-real transfer ability enabled by the unified language representation shared across domains; iii) transparent interpretability connecting high-level reasoning and low-level control. Extensive experiments demonstrate the effectiveness of the proposed paradigm and its potential to advance LMM-driven robotic manipulation.
Abstract:Hand shadow art is a captivating art form, creatively using hand shadows to reproduce expressive shapes on the wall. In this work, we study an inverse problem: given a target shape, find the poses of left and right hands that together best produce a shadow resembling the input. This problem is nontrivial, since the design space of 3D hand poses is huge while being restrictive due to anatomical constraints. Also, we need to attend to the input's shape and crucial features, though the input is colorless and textureless. To meet these challenges, we design Hand-Shadow Poser, a three-stage pipeline, to decouple the anatomical constraints (by hand) and semantic constraints (by shadow shape): (i) a generative hand assignment module to explore diverse but reasonable left/right-hand shape hypotheses; (ii) a generalized hand-shadow alignment module to infer coarse hand poses with a similarity-driven strategy for selecting hypotheses; and (iii) a shadow-feature-aware refinement module to optimize the hand poses for physical plausibility and shadow feature preservation. Further, we design our pipeline to be trainable on generic public hand data, thus avoiding the need for any specialized training dataset. For method validation, we build a benchmark of 210 diverse shadow shapes of varying complexity and a comprehensive set of metrics, including a novel DINOv2-based evaluation metric. Through extensive comparisons with multiple baselines and user studies, our approach is demonstrated to effectively generate bimanual hand poses for a large variety of hand shapes for over 85% of the benchmark cases.
Abstract:Multimodal large language models (MLLMs) have advanced perception across text, vision, and audio, yet they often struggle with structured cross-modal reasoning, particularly when integrating audio and visual signals. We introduce EchoInk-R1, a reinforcement learning framework that enhances such reasoning in MLLMs. Built upon the Qwen2.5-Omni-7B foundation and optimized with Group Relative Policy Optimization (GRPO), EchoInk-R1 tackles multiple-choice question answering over synchronized audio-image pairs. To enable this, we curate AVQA-R1-6K, a dataset pairing such audio-image inputs with multiple-choice questions derived from OmniInstruct-v1. EchoInk-R1-7B achieves 85.77% accuracy on the validation set, outperforming the base model, which scores 80.53%, using only 562 reinforcement learning steps. Beyond accuracy, EchoInk-R1 demonstrates reflective reasoning by revisiting initial interpretations and refining responses when facing ambiguous multimodal inputs. These results suggest that lightweight reinforcement learning fine-tuning enhances cross-modal reasoning in MLLMs. EchoInk-R1 is the first framework to unify audio, visual, and textual modalities for general open-world reasoning via reinforcement learning. Code and data are publicly released to facilitate further research.
Abstract:Lifting multi-view 2D instance segmentation to a radiance field has proven to be effective to enhance 3D understanding. Existing methods rely on direct matching for end-to-end lifting, yielding inferior results; or employ a two-stage solution constrained by complex pre- or post-processing. In this work, we design a new end-to-end object-aware lifting approach, named Unified-Lift that provides accurate 3D segmentation based on the 3D Gaussian representation. To start, we augment each Gaussian point with an additional Gaussian-level feature learned using a contrastive loss to encode instance information. Importantly, we introduce a learnable object-level codebook to account for individual objects in the scene for an explicit object-level understanding and associate the encoded object-level features with the Gaussian-level point features for segmentation predictions. While promising, achieving effective codebook learning is non-trivial and a naive solution leads to degraded performance. Therefore, we formulate the association learning module and the noisy label filtering module for effective and robust codebook learning. We conduct experiments on three benchmarks: LERF-Masked, Replica, and Messy Rooms datasets. Both qualitative and quantitative results manifest that our Unified-Lift clearly outperforms existing methods in terms of segmentation quality and time efficiency. The code is publicly available at \href{https://github.com/Runsong123/Unified-Lift}{https://github.com/Runsong123/Unified-Lift}.
Abstract:Estimating the 3D pose of hand and potential hand-held object from monocular images is a longstanding challenge. Yet, existing methods are specialized, focusing on either bare-hand or hand interacting with object. No method can flexibly handle both scenarios and their performance degrades when applied to the other scenario. In this paper, we propose UniHOPE, a unified approach for general 3D hand-object pose estimation, flexibly adapting both scenarios. Technically, we design a grasp-aware feature fusion module to integrate hand-object features with an object switcher to dynamically control the hand-object pose estimation according to grasping status. Further, to uplift the robustness of hand pose estimation regardless of object presence, we generate realistic de-occluded image pairs to train the model to learn object-induced hand occlusions, and formulate multi-level feature enhancement techniques for learning occlusion-invariant features. Extensive experiments on three commonly-used benchmarks demonstrate UniHOPE's SOTA performance in addressing hand-only and hand-object scenarios. Code will be released on https://github.com/JoyboyWang/UniHOPE_Pytorch.
Abstract:Developing AI agents to autonomously manipulate graphical user interfaces is a long challenging task. Recent advances in data scaling law inspire us to train computer-use agents with a scaled instruction set, yet using behavior cloning to train agents still requires immense high-quality trajectories. To meet the scalability need, we designed STEVE, a step verification pipeline for computer-use agent training. First, we establish a large instruction set for computer-use agents and collect trajectory data with some suboptimal agents. GPT-4o is used to verify the correctness of each step in the trajectories based on the screens before and after the action execution, assigning each step with a binary label. Last, we adopt the Kahneman and Tversky Optimization to optimize the agent from the binary stepwise labels. Extensive experiments manifest that our agent outperforms supervised finetuning by leveraging both positive and negative actions within a trajectory. Also, STEVE enables us to train a 7B vision-language model as a computer-use agent, achieving leading performance in the challenging live desktop environment WinAgentArena with great efficiency at a reduced cost. Code and data: https://github.com/FanbinLu/STEVE.
Abstract:Scene-level point cloud registration is very challenging when considering dynamic foregrounds. Existing indoor datasets mostly assume rigid motions, so the trained models cannot robustly handle scenes with non-rigid motions. On the other hand, non-rigid datasets are mainly object-level, so the trained models cannot generalize well to complex scenes. This paper presents HybridReg, a new approach to 3D point cloud registration, learning uncertainty mask to account for hybrid motions: rigid for backgrounds and non-rigid/rigid for instance-level foregrounds. First, we build a scene-level 3D registration dataset, namely HybridMatch, designed specifically with strategies to arrange diverse deforming foregrounds in a controllable manner. Second, we account for different motion types and formulate a mask-learning module to alleviate the interference of deforming outliers. Third, we exploit a simple yet effective negative log-likelihood loss to adopt uncertainty to guide the feature extraction and correlation computation. To our best knowledge, HybridReg is the first work that exploits hybrid motions for robust point cloud registration. Extensive experiments show HybridReg's strengths, leading it to achieve state-of-the-art performance on both widely-used indoor and outdoor datasets.