Abstract:Embodied AI systems, comprising AI models and physical plants, are increasingly prevalent across various applications. Due to the rarity of system failures, ensuring their safety in complex operating environments remains a major challenge, which severely hinders their large-scale deployment in safety-critical domains, such as autonomous vehicles, medical devices, and robotics. While achieving provable deterministic safety--verifying system safety across all possible scenarios--remains theoretically ideal, the rarity and complexity of corner cases make this approach impractical for scalable embodied AI systems. To address this challenge, we introduce provable probabilistic safety, which aims to ensure that the residual risk of large-scale deployment remains below a predefined threshold. Instead of attempting exhaustive safety proof across all corner cases, this paradigm establishes a probabilistic safety boundary on overall system performance, leveraging statistical methods to enhance feasibility and scalability. A well-defined probabilistic safety boundary enables embodied AI systems to be deployed at scale while allowing for continuous refinement of safety guarantees. Our work focuses on three core questions: what is provable probabilistic safety, how to prove the probabilistic safety, and how to achieve the provable probabilistic safety. By bridging the gap between theoretical safety assurance and practical deployment, our work offers a pathway toward safer, large-scale adoption of embodied AI systems in safety-critical applications.
Abstract:The inevitable presence of data heterogeneity has made federated learning very challenging. There are numerous methods to deal with this issue, such as local regularization, better model fusion techniques, and data sharing. Though effective, they lack a deep understanding of how data heterogeneity can affect the global decision boundary. In this paper, we bridge this gap by performing an experimental analysis of the learned decision boundary using a toy example. Our observations are surprising: (1) we find that the existing methods suffer from forgetting and clients forget the global decision boundary and only learn the perfect local one, and (2) this happens regardless of the initial weights, and clients forget the global decision boundary even starting from pre-trained optimal weights. In this paper, we present FedProj, a federated learning framework that robustly learns the global decision boundary and avoids its forgetting during local training. To achieve better ensemble knowledge fusion, we design a novel server-side ensemble knowledge transfer loss to further calibrate the learned global decision boundary. To alleviate the issue of learned global decision boundary forgetting, we further propose leveraging an episodic memory of average ensemble logits on a public unlabeled dataset to regulate the gradient updates at each step of local training. Experimental results demonstrate that FedProj outperforms state-of-the-art methods by a large margin.
Abstract:Large language models (LLMs) are revolutionizing education, with LLM-based agents playing a key role in simulating student behavior. A major challenge in student simulation is modeling the diverse learning patterns of students at various cognitive levels. However, current LLMs, typically trained as ``helpful assistants'', target at generating perfect responses. As a result, they struggle to simulate students with diverse cognitive abilities, as they often produce overly advanced answers, missing the natural imperfections that characterize student learning and resulting in unrealistic simulations. To address this issue, we propose a training-free framework for student simulation. We begin by constructing a cognitive prototype for each student using a knowledge graph, which captures their understanding of concepts from past learning records. This prototype is then mapped to new tasks to predict student performance. Next, we simulate student solutions based on these predictions and iteratively refine them using a beam search method to better replicate realistic mistakes. To validate our approach, we construct the \texttt{Student\_100} dataset, consisting of $100$ students working on Python programming and $5,000$ learning records. Experimental results show that our method consistently outperforms baseline models, achieving $100\%$ improvement in simulation accuracy.
Abstract:Although Large Language Models (LLMs) have demonstrated remarkable progress, their proficiency in graph-related tasks remains notably limited, hindering the development of truly general-purpose models. Previous attempts, including pretraining graph foundation models or employing supervised fine-tuning, often face challenges such as the scarcity of large-scale, universally represented graph data. We introduce G1, a simple yet effective approach demonstrating that Reinforcement Learning (RL) on synthetic graph-theoretic tasks can significantly scale LLMs' graph reasoning abilities. To enable RL training, we curate Erd\~os, the largest graph reasoning dataset to date comprising 50 diverse graph-theoretic tasks of varying difficulty levels, 100k training data and 5k test data, all drived from real-world graphs. With RL on Erd\~os, G1 obtains substantial improvements in graph reasoning, where our finetuned 3B model even outperforms Qwen2.5-72B-Instruct (24x size). RL-trained models also show strong zero-shot generalization to unseen tasks, domains, and graph encoding schemes, including other graph-theoretic benchmarks as well as real-world node classification and link prediction tasks, without compromising general reasoning abilities. Our findings offer an efficient, scalable path for building strong graph reasoners by finetuning LLMs with RL on graph-theoretic tasks, which combines the strengths of pretrained LLM capabilities with abundant, automatically generated synthetic data, suggesting that LLMs possess graph understanding abilities that RL can elicit successfully.
Abstract:Modern large language model (LLM) services increasingly rely on complex, often abstract operations, such as multi-step reasoning and multi-agent collaboration, to generate high-quality outputs. While users are billed based on token consumption and API usage, these internal steps are typically not visible. We refer to such systems as Commercial Opaque LLM Services (COLS). This position paper highlights emerging accountability challenges in COLS: users are billed for operations they cannot observe, verify, or contest. We formalize two key risks: \textit{quantity inflation}, where token and call counts may be artificially inflated, and \textit{quality downgrade}, where providers might quietly substitute lower-cost models or tools. Addressing these risks requires a diverse set of auditing strategies, including commitment-based, predictive, behavioral, and signature-based methods. We further explore the potential of complementary mechanisms such as watermarking and trusted execution environments to enhance verifiability without compromising provider confidentiality. We also propose a modular three-layer auditing framework for COLS and users that enables trustworthy verification across execution, secure logging, and user-facing auditability without exposing proprietary internals. Our aim is to encourage further research and policy development toward transparency, auditability, and accountability in commercial LLM services.
Abstract:LLM-based digital twin simulation, where large language models are used to emulate individual human behavior, holds great promise for research in AI, social science, and digital experimentation. However, progress in this area has been hindered by the scarcity of real, individual-level datasets that are both large and publicly available. This lack of high-quality ground truth limits both the development and validation of digital twin methodologies. To address this gap, we introduce a large-scale, public dataset designed to capture a rich and holistic view of individual human behavior. We survey a representative sample of $N = 2,058$ participants (average 2.42 hours per person) in the US across four waves with 500 questions in total, covering a comprehensive battery of demographic, psychological, economic, personality, and cognitive measures, as well as replications of behavioral economics experiments and a pricing survey. The final wave repeats tasks from earlier waves to establish a test-retest accuracy baseline. Initial analyses suggest the data are of high quality and show promise for constructing digital twins that predict human behavior well at the individual and aggregate levels. By making the full dataset publicly available, we aim to establish a valuable testbed for the development and benchmarking of LLM-based persona simulations. Beyond LLM applications, due to its unique breadth and scale the dataset also enables broad social science research, including studies of cross-construct correlations and heterogeneous treatment effects.
Abstract:Recent advances in LegalAI have primarily focused on individual case judgment analysis, often overlooking the critical appellate process within the judicial system. Appeals serve as a core mechanism for error correction and ensuring fair trials, making them highly significant both in practice and in research. To address this gap, we present the AppealCase dataset, consisting of 10,000 pairs of real-world, matched first-instance and second-instance documents across 91 categories of civil cases. The dataset also includes detailed annotations along five dimensions central to appellate review: judgment reversals, reversal reasons, cited legal provisions, claim-level decisions, and whether there is new information in the second instance. Based on these annotations, we propose five novel LegalAI tasks and conduct a comprehensive evaluation across 20 mainstream models. Experimental results reveal that all current models achieve less than 50% F1 scores on the judgment reversal prediction task, highlighting the complexity and challenge of the appeal scenario. We hope that the AppealCase dataset will spur further research in LegalAI for appellate case analysis and contribute to improving consistency in judicial decision-making.
Abstract:Probabilities of causation are fundamental to modern decision-making. Pearl first introduced three binary probabilities of causation, and Tian and Pearl later derived tight bounds for them using Balke's linear programming. The theoretical characterization of probabilities of causation with multi-valued treatments and outcomes has remained unresolved for decades, limiting the scope of causality-based decision-making. In this paper, we resolve this foundational gap by proposing a complete set of representative probabilities of causation and proving that they are sufficient to characterize all possible probabilities of causation within the framework of Structural Causal Models (SCMs). We then formally derive tight bounds for these representative quantities using formal mathematical proofs. Finally, we demonstrate the practical relevance of our results through illustrative toy examples.
Abstract:Large Language Models (LLMs) are known to be vulnerable to jailbreaking attacks, wherein adversaries exploit carefully engineered prompts to induce harmful or unethical responses. Such threats have raised critical concerns about the safety and reliability of LLMs in real-world deployment. While existing defense mechanisms partially mitigate such risks, subsequent advancements in adversarial techniques have enabled novel jailbreaking methods to circumvent these protections, exposing the limitations of static defense frameworks. In this work, we explore defending against evolving jailbreaking threats through the lens of context retrieval. First, we conduct a preliminary study demonstrating that even a minimal set of safety-aligned examples against a particular jailbreak can significantly enhance robustness against this attack pattern. Building on this insight, we further leverage the retrieval-augmented generation (RAG) techniques and propose Safety Context Retrieval (SCR), a scalable and robust safeguarding paradigm for LLMs against jailbreaking. Our comprehensive experiments demonstrate how SCR achieves superior defensive performance against both established and emerging jailbreaking tactics, contributing a new paradigm to LLM safety. Our code will be available upon publication.
Abstract:As post-training techniques evolve, large language models (LLMs) are increasingly augmented with structured multi-step reasoning abilities, often optimized through reinforcement learning. These reasoning-enhanced models outperform standard LLMs on complex tasks and now underpin many commercial LLM APIs. However, to protect proprietary behavior and reduce verbosity, providers typically conceal the reasoning traces while returning only the final answer. This opacity introduces a critical transparency gap: users are billed for invisible reasoning tokens, which often account for the majority of the cost, yet have no means to verify their authenticity. This opens the door to token count inflation, where providers may overreport token usage or inject synthetic, low-effort tokens to inflate charges. To address this issue, we propose CoIn, a verification framework that audits both the quantity and semantic validity of hidden tokens. CoIn constructs a verifiable hash tree from token embedding fingerprints to check token counts, and uses embedding-based relevance matching to detect fabricated reasoning content. Experiments demonstrate that CoIn, when deployed as a trusted third-party auditor, can effectively detect token count inflation with a success rate reaching up to 94.7%, showing the strong ability to restore billing transparency in opaque LLM services. The dataset and code are available at https://github.com/CASE-Lab-UMD/LLM-Auditing-CoIn.