Abstract:We introduce DeepFleet, a suite of foundation models designed to support coordination and planning for large-scale mobile robot fleets. These models are trained on fleet movement data, including robot positions, goals, and interactions, from hundreds of thousands of robots in Amazon warehouses worldwide. DeepFleet consists of four architectures that each embody a distinct inductive bias and collectively explore key points in the design space for multi-agent foundation models: the robot-centric (RC) model is an autoregressive decision transformer operating on neighborhoods of individual robots; the robot-floor (RF) model uses a transformer with cross-attention between robots and the warehouse floor; the image-floor (IF) model applies convolutional encoding to a multi-channel image representation of the full fleet; and the graph-floor (GF) model combines temporal attention with graph neural networks for spatial relationships. In this paper, we describe these models and present our evaluation of the impact of these design choices on prediction task performance. We find that the robot-centric and graph-floor models, which both use asynchronous robot state updates and incorporate the localized structure of robot interactions, show the most promise. We also present experiments that show that these two models can make effective use of larger warehouses operation datasets as the models are scaled up.
Abstract:This paper investigates constructive interference (CI)-based waveform design for phase shift keying and quadrature amplitude modulation symbols under relaxed block-level power constraints in multi-user multiple-input single-output (MU-MIMO) communication systems. Existing linear CI-based precoding methods, including symbol-level precoding (SLP) and block-level precoding (BLP), suffer from performance limitations due to strict symbol-level power budgets or insufficient degrees of freedom over the block. To overcome these challenges, we propose a nonlinear waveform optimization framework that introduces additional optimization variables and maximizes the minimum CI metric across the transmission block. The optimal waveform is derived in closed form using the function and Karush Kuhn Tucker conditions, and the solution is explicitly expressed with respect to the dual variables. Moreover, the original problems are equivalently reformulated as tractable quadratic programming (QP) problems. To efficiently solve the derived QP problems, we develop an improved alternating direction method of multipliers (ADMM) algorithm by integrating a linear-time projection technique, which significantly enhances the computational efficiency. Simulation results demonstrate that the proposed algorithms substantially outperform the conventional CI-SLP and CI-BLP approaches, particularly under high-order modulations and large block lengths.
Abstract:The rapid development of AR/VR, remote sensing, satellite radar, and medical equipment has created an imperative demand for ultra efficient image compression and reconstruction that exceed the capabilities of electronic processors. For the first time, we demonstrate an end to end image compression and reconstruction approach using an optoelectronic computing processor,achieving orders of magnitude higher speed and lower energy consumption than electronic counterparts. At its core is a 32X32 silicon photonic computing chip, which monolithically integrates 32 high speed modulators, 32 detectors, and a programmable photonic matrix core, copackaged with all necessary control electronics (TIA, ADC, DAC, FPGA etc.). Leveraging the photonic matrix core programmability, the processor generates trainable compressive matrices, enabling adjustable image compression ratios (from 2X to 256X) to meet diverse application needs. Deploying a custom lightweight photonic integrated circuit oriented network (LiPICO-Net) enables high quality reconstruction of compressed images. Our approach delivers an end to end latency of only 49.5ps/pixel while consuming only less than 10.6nJ/pixel-both metrics representing 2-3 orders of magnitude improvement compared with classical models running on state-of-the-art GPUs. We validate the system on a 130 million-pixel aerial imagery, enabling real time compression where electronic systems falter due to power and latency constraints. This work not only provides a transformative solution for massive image processing but also opens new avenues for photonic computing applications.
Abstract:Humans often use visual aids, for example diagrams or sketches, when solving complex problems. Training multimodal models to do the same, known as Visual Chain of Thought (Visual CoT), is challenging due to: (1) poor off-the-shelf visual CoT performance, which hinders reinforcement learning, and (2) the lack of high-quality visual CoT training data. We introduce $\textbf{Zebra-CoT}$, a diverse large-scale dataset with 182,384 samples, containing logically coherent interleaved text-image reasoning traces. We focus on four categories of tasks where sketching or visual reasoning is especially natural, spanning scientific questions such as geometry, physics, and algorithms; 2D visual reasoning tasks like visual search and jigsaw puzzles; 3D reasoning tasks including 3D multi-hop inference, embodied and robot planning; visual logic problems and strategic games like chess. Fine-tuning the Anole-7B model on the Zebra-CoT training corpus results in an improvement of +12% in our test-set accuracy and yields up to +13% performance gain on standard VLM benchmark evaluations. Fine-tuning Bagel-7B yields a model that generates high-quality interleaved visual reasoning chains, underscoring Zebra-CoT's effectiveness for developing multimodal reasoning abilities. We open-source our dataset and models to support development and evaluation of visual CoT.
Abstract:Neural network (NN)-based Digital Predistortion (DPD) stands out in improving signal quality in wideband radio frequency (RF) power amplifiers (PAs) employing complex modulation. However, NN DPDs usually rely on a large number of parameters for effective linearization and can significantly contribute to the energy consumption of the digital back-end in RF systems. This paper presents OpenDPDv2, a unified framework for PA modeling, DPD learning, and model optimization to reduce power consumption while maintaining high linearization performance. The optimization techniques feature a novel DPD algorithm, TRes-DeltaGRU, alongside two energy-efficient methods. The top-performing 32-bit floating-point (FP32) TRes-DeltaGRU-DPD model achieves an Adjacent Channel Power Ratio (ACPR) of -59.4 dBc and Error Vector Magnitude (EVM) of -42.1 dBc. By exploiting fixed-point quantization and dynamic temporal sparsity of input signals and hidden neurons, the inference energy of our model can be reduced by 4.5X while still maintaining -50.3 dBc ACPR and -35.2 dB EVM with 56% temporal sparsity. This was evaluated using a TM3.1a 200 MHz bandwidth 256-QAM OFDM signal applied to a 3.5 GHz GaN Doherty RF PA. OpenDPDv2 code, datasets, and documentation are publicly accessible at: https://github.com/lab-emi/OpenDPD.
Abstract:Explainable recommendations, which use the information of user and item with interaction to generate a explanation for why the user would interact with the item, are crucial for improving user trust and decision transparency to the recommender system. Existing methods primarily rely on encoding features of users and items to embeddings, which often leads to information loss due to dimensionality reduction, sparse interactions, and so on. With the advancements of large language models (LLMs) in language comprehension, some methods use embeddings as LLM inputs for explanation generation. However, since embeddings lack inherent semantics, LLMs must adjust or extend their parameters to interpret them, a process that inevitably incurs information loss. To address this issue, we propose a novel approach combining profile generation via hierarchical interaction summarization (PGHIS), which leverages a pretrained LLM to hierarchically summarize user-item interactions, generating structured textual profiles as explicit representations of user and item characteristics. Additionally, we propose contrastive prompting for explanation generation (CPEG) which employs contrastive learning to guide another reasoning language models in producing high-quality ground truth recommendation explanations. Finally, we use the textual profiles of user and item as input and high-quality explanation as output to fine-tune a LLM for generating explanations. Experimental results on multiple datasets demonstrate that our approach outperforms existing state-of-the-art methods, achieving a great improvement on metrics about explainability (e.g., 5% on GPTScore) and text quality. Furthermore, our generated ground truth explanations achieve a significantly higher win rate compared to user-written reviews and those produced by other methods, demonstrating the effectiveness of CPEG in generating high-quality ground truths.
Abstract:Large Language Models (LLMs) have gained significant attention due to their versatility across a wide array of applications. Fine-tuning LLMs with parameter-efficient adapters, such as Low-Rank Adaptation (LoRA), enables these models to efficiently adapt to downstream tasks without extensive retraining. Deploying fine-tuned LLMs on multi-tenant edge devices offers substantial benefits, such as reduced latency, enhanced privacy, and personalized responses. However, serving LLMs efficiently on resource-constrained edge devices presents critical challenges, including the complexity of adapter selection for different tasks and memory overhead from frequent adapter swapping. Moreover, given the multiple requests in multi-tenant settings, processing requests sequentially results in underutilization of computational resources and increased latency. This paper introduces EdgeLoRA, an efficient system for serving LLMs on edge devices in multi-tenant environments. EdgeLoRA incorporates three key innovations: (1) an adaptive adapter selection mechanism to streamline the adapter configuration process; (2) heterogeneous memory management, leveraging intelligent adapter caching and pooling to mitigate memory operation overhead; and (3) batch LoRA inference, enabling efficient batch processing to significantly reduce computational latency. Comprehensive evaluations using the Llama3.1-8B model demonstrate that EdgeLoRA significantly outperforms the status quo (i.e., llama.cpp) in terms of both latency and throughput. The results demonstrate that EdgeLoRA can achieve up to a 4 times boost in throughput. Even more impressively, it can serve several orders of magnitude more adapters simultaneously. These results highlight EdgeLoRA's potential to transform edge deployment of LLMs in multi-tenant scenarios, offering a scalable and efficient solution for resource-constrained environments.
Abstract:High-level representations have become a central focus in enhancing AI transparency and control, shifting attention from individual neurons or circuits to structured semantic directions that align with human-interpretable concepts. Motivated by the Linear Representation Hypothesis (LRH), we propose the Input-Space Linearity Hypothesis (ISLH), which posits that concept-aligned directions originate in the input space and are selectively amplified with increasing depth. We then introduce the Spectral Principal Path (SPP) framework, which formalizes how deep networks progressively distill linear representations along a small set of dominant spectral directions. Building on this framework, we further demonstrate the multimodal robustness of these representations in Vision-Language Models (VLMs). By bridging theoretical insights with empirical validation, this work advances a structured theory of representation formation in deep networks, paving the way for improving AI robustness, fairness, and transparency.
Abstract:Embodied AI systems, comprising AI models and physical plants, are increasingly prevalent across various applications. Due to the rarity of system failures, ensuring their safety in complex operating environments remains a major challenge, which severely hinders their large-scale deployment in safety-critical domains, such as autonomous vehicles, medical devices, and robotics. While achieving provable deterministic safety--verifying system safety across all possible scenarios--remains theoretically ideal, the rarity and complexity of corner cases make this approach impractical for scalable embodied AI systems. To address this challenge, we introduce provable probabilistic safety, which aims to ensure that the residual risk of large-scale deployment remains below a predefined threshold. Instead of attempting exhaustive safety proof across all corner cases, this paradigm establishes a probabilistic safety boundary on overall system performance, leveraging statistical methods to enhance feasibility and scalability. A well-defined probabilistic safety boundary enables embodied AI systems to be deployed at scale while allowing for continuous refinement of safety guarantees. Our work focuses on three core questions: what is provable probabilistic safety, how to prove the probabilistic safety, and how to achieve the provable probabilistic safety. By bridging the gap between theoretical safety assurance and practical deployment, our work offers a pathway toward safer, large-scale adoption of embodied AI systems in safety-critical applications.
Abstract:Large language models (LLMs) are revolutionizing education, with LLM-based agents playing a key role in simulating student behavior. A major challenge in student simulation is modeling the diverse learning patterns of students at various cognitive levels. However, current LLMs, typically trained as ``helpful assistants'', target at generating perfect responses. As a result, they struggle to simulate students with diverse cognitive abilities, as they often produce overly advanced answers, missing the natural imperfections that characterize student learning and resulting in unrealistic simulations. To address this issue, we propose a training-free framework for student simulation. We begin by constructing a cognitive prototype for each student using a knowledge graph, which captures their understanding of concepts from past learning records. This prototype is then mapped to new tasks to predict student performance. Next, we simulate student solutions based on these predictions and iteratively refine them using a beam search method to better replicate realistic mistakes. To validate our approach, we construct the \texttt{Student\_100} dataset, consisting of $100$ students working on Python programming and $5,000$ learning records. Experimental results show that our method consistently outperforms baseline models, achieving $100\%$ improvement in simulation accuracy.