Using the atomic cluster expansion (ACE) framework, we develop a machine learning interatomic potential for fast and accurately modelling the phonon transport properties of wurtzite aluminum nitride. The predictive power of the ACE potential against density functional theory (DFT) is demonstrated across a broad range of properties of w-AlN, including ground-state lattice parameters, specific heat capacity, coefficients of thermal expansion, bulk modulus, and harmonic phonon dispersions. Validation of lattice thermal conductivity is further carried out by comparing the ACE-predicted values to the DFT calculations and experiments, exhibiting the overall capability of our ACE potential in sufficiently describing anharmonic phonon interactions. As a practical application, we perform a lattice dynamics analysis using the potential to unravel the effects of biaxial strains on thermal conductivity and phonon properties of w-AlN, which is identified as a significant tuning factor for near-junction thermal design of w-AlN-based electronics.
Stain variation is a unique challenge associated with automated analysis of digital pathology. Numerous methods have been developed to improve the robustness of machine learning methods to stain variation, but comparative studies have demonstrated limited benefits to performance. Moreover, methods to handle stain variation were largely developed for H&E stained data, with evaluation generally limited to classification tasks. Here we propose Stain Consistency Learning, a novel framework combining stain-specific augmentation with a stain consistency loss function to learn stain colour invariant features. We perform the first, extensive comparison of methods to handle stain variation for segmentation tasks, comparing ten methods on Masson's trichrome and H&E stained cell and nuclei datasets, respectively. We observed that stain normalisation methods resulted in equivalent or worse performance, while stain augmentation or stain adversarial methods demonstrated improved performance, with the best performance consistently achieved by our proposed approach. The code is available at: https://github.com/mlyg/stain_consistency_learning
Denoising Diffusion models have exhibited remarkable capabilities in image generation. However, generating high-quality samples requires a large number of iterations. Knowledge distillation for diffusion models is an effective method to address this limitation with a shortened sampling process but causes degraded generative quality. Based on our analysis with bias-variance decomposition and experimental observations, we attribute the degradation to the spatial fitting error occurring in the training of both the teacher and student model. Accordingly, we propose $\textbf{S}$patial $\textbf{F}$itting-$\textbf{E}$rror $\textbf{R}$eduction $\textbf{D}$istillation model ($\textbf{SFERD}$). SFERD utilizes attention guidance from the teacher model and a designed semantic gradient predictor to reduce the student's fitting error. Empirically, our proposed model facilitates high-quality sample generation in a few function evaluations. We achieve an FID of 5.31 on CIFAR-10 and 9.39 on ImageNet 64$\times$64 with only one step, outperforming existing diffusion methods. Our study provides a new perspective on diffusion distillation by highlighting the intrinsic denoising ability of models.
Effectively leveraging multimodal data such as various images, laboratory tests and clinical information is gaining traction in a variety of AI-based medical diagnosis and prognosis tasks. Most existing multi-modal techniques only focus on enhancing their performance by leveraging the differences or shared features from various modalities and fusing feature across different modalities. These approaches are generally not optimal for clinical settings, which pose the additional challenges of limited training data, as well as being rife with redundant data or noisy modality channels, leading to subpar performance. To address this gap, we study the robustness of existing methods to data redundancy and noise and propose a generalized dynamic multimodal information bottleneck framework for attaining a robust fused feature representation. Specifically, our information bottleneck module serves to filter out the task-irrelevant information and noises in the fused feature, and we further introduce a sufficiency loss to prevent dropping of task-relevant information, thus explicitly preserving the sufficiency of prediction information in the distilled feature. We validate our model on an in-house and a public COVID19 dataset for mortality prediction as well as two public biomedical datasets for diagnostic tasks. Extensive experiments show that our method surpasses the state-of-the-art and is significantly more robust, being the only method to remain performance when large-scale noisy channels exist. Our code is publicly available at https://github.com/BII-wushuang/DMIB.
Diffusion Tensor Cardiac Magnetic Resonance (DT-CMR) is the only in vivo method to non-invasively examine the microstructure of the human heart. Current research in DT-CMR aims to improve the understanding of how the cardiac microstructure relates to the macroscopic function of the healthy heart as well as how microstructural dysfunction contributes to disease. To get the final DT-CMR metrics, we need to acquire diffusion weighted images of at least 6 directions. However, due to DWI's low signal-to-noise ratio, the standard voxel size is quite big on the scale for microstructures. In this study, we explored the potential of deep-learning-based methods in improving the image quality volumetrically (x4 in all dimensions). This study proposed a novel framework to enable volumetric super-resolution, with an additional model input of high-resolution b0 DWI. We demonstrated that the additional input could offer higher super-resolved image quality. Going beyond, the model is also able to super-resolve DWIs of unseen b-values, proving the model framework's generalizability for cardiac DWI superresolution. In conclusion, we would then recommend giving the model a high-resolution reference image as an additional input to the low-resolution image for training and inference to guide all super-resolution frameworks for parametric imaging where a reference image is available.
Thorax disease analysis in large-scale, multi-centre, and multi-scanner settings is often limited by strict privacy policies. Federated learning (FL) offers a potential solution, while traditional parameter-based FL can be limited by issues such as high communication costs, data leakage, and heterogeneity. Distillation-based FL can improve efficiency, but it relies on a proxy dataset, which is often impractical in clinical practice. To address these challenges, we introduce a data-free distillation-based FL approach FedKDF. In FedKDF, the server employs a lightweight generator to aggregate knowledge from different clients without requiring access to their private data or a proxy dataset. FedKDF combines the predictors from clients into a single, unified predictor, which is further optimized using the learned knowledge in the lightweight generator. Our empirical experiments demonstrate that FedKDF offers a robust solution for efficient, privacy-preserving federated thorax disease analysis.
Diffusion models are a family of generative models that yield record-breaking performance in tasks such as image synthesis, video generation, and molecule design. Despite their capabilities, their efficiency, especially in the reverse denoising process, remains a challenge due to slow convergence rates and high computational costs. In this work, we introduce an approach that leverages continuous dynamical systems to design a novel denoising network for diffusion models that is more parameter-efficient, exhibits faster convergence, and demonstrates increased noise robustness. Experimenting with denoising probabilistic diffusion models, our framework operates with approximately a quarter of the parameters and 30% of the Floating Point Operations (FLOPs) compared to standard U-Nets in Denoising Diffusion Probabilistic Models (DDPMs). Furthermore, our model is up to 70% faster in inference than the baseline models when measured in equal conditions while converging to better quality solutions.
Both accuracy and timeliness are key factors in detecting fake news on social media. However, most existing methods encounter an accuracy-timeliness dilemma: Content-only methods guarantee timeliness but perform moderately because of limited available information, while social context-based ones generally perform better but inevitably lead to latency because of social context accumulation needs. To break such a dilemma, a feasible but not well-studied solution is to leverage social contexts (e.g., comments) from historical news for training a detection model and apply it to newly emerging news without social contexts. This requires the model to (1) sufficiently learn helpful knowledge from social contexts, and (2) be well compatible with situations that social contexts are available or not. To achieve this goal, we propose to absorb and parameterize useful knowledge from comments in historical news and then inject it into a content-only detection model. Specifically, we design the Comments Assisted Fake News Detection method (CAS-FEND), which transfers useful knowledge from a comments-aware teacher model to a content-only student model during training. The student model is further used to detect newly emerging fake news. Experiments show that the CAS-FEND student model outperforms all content-only methods and even those with 1/4 comments as inputs, demonstrating its superiority for early detection.