Nanjing University of Science and Technology, Nanjing, China
Abstract:Pre-trained language models (PLMs) demonstrate excellent abilities to understand texts in the generic domain while struggling in a specific domain. Although continued pre-training on a large domain-specific corpus is effective, it is costly to tune all the parameters on the domain. In this paper, we investigate whether we can adapt PLMs both effectively and efficiently by only tuning a few parameters. Specifically, we decouple the feed-forward networks (FFNs) of the Transformer architecture into two parts: the original pre-trained FFNs to maintain the old-domain knowledge and our novel domain-specific adapters to inject domain-specific knowledge in parallel. Then we adopt a mixture-of-adapters gate to fuse the knowledge from different domain adapters dynamically. Our proposed Mixture-of-Domain-Adapters (MixDA) employs a two-stage adapter-tuning strategy that leverages both unlabeled data and labeled data to help the domain adaptation: i) domain-specific adapter on unlabeled data; followed by ii) the task-specific adapter on labeled data. MixDA can be seamlessly plugged into the pretraining-finetuning paradigm and our experiments demonstrate that MixDA achieves superior performance on in-domain tasks (GLUE), out-of-domain tasks (ChemProt, RCT, IMDB, Amazon), and knowledge-intensive tasks (KILT). Further analyses demonstrate the reliability, scalability, and efficiency of our method. The code is available at https://github.com/Amano-Aki/Mixture-of-Domain-Adapters.
Abstract:Offline goal-conditioned RL (GCRL) offers a way to train general-purpose agents from fully offline datasets. In addition to being conservative within the dataset, the generalization ability to achieve unseen goals is another fundamental challenge for offline GCRL. However, to the best of our knowledge, this problem has not been well studied yet. In this paper, we study out-of-distribution (OOD) generalization of offline GCRL both theoretically and empirically to identify factors that are important. In a number of experiments, we observe that weighted imitation learning enjoys better generalization than pessimism-based offline RL method. Based on this insight, we derive a theory for OOD generalization, which characterizes several important design choices. We then propose a new offline GCRL method, Generalizable Offline goAl-condiTioned RL (GOAT), by combining the findings from our theoretical and empirical studies. On a new benchmark containing 9 independent identically distributed (IID) tasks and 17 OOD tasks, GOAT outperforms current state-of-the-art methods by a large margin.
Abstract:As deep neural networks are highly expressive, it is important to find solutions with small generalization gap (the difference between the performance on the training data and unseen data). Focusing on the stochastic nature of training, we first present a theoretical analysis in which the bound of generalization gap depends on what we call inconsistency and instability of model outputs, which can be estimated on unlabeled data. Our empirical study based on this analysis shows that instability and inconsistency are strongly predictive of generalization gap in various settings. In particular, our finding indicates that inconsistency is a more reliable indicator of generalization gap than the sharpness of the loss landscape. Furthermore, we show that algorithmic reduction of inconsistency leads to superior performance. The results also provide a theoretical basis for existing methods such as co-distillation and ensemble.
Abstract:In recent years, the field of computer vision has seen significant advancements thanks to the development of large language models (LLMs). These models have enabled more effective and sophisticated interactions between humans and machines, paving the way for novel techniques that blur the lines between human and machine intelligence. In this paper, we introduce a new paradigm for object detection that we call reasoning-based object detection. Unlike conventional object detection methods that rely on specific object names, our approach enables users to interact with the system using natural language instructions, allowing for a higher level of interactivity. Our proposed method, called DetGPT, leverages state-of-the-art multi-modal models and open-vocabulary object detectors to perform reasoning within the context of the user's instructions and the visual scene. This enables DetGPT to automatically locate the object of interest based on the user's expressed desires, even if the object is not explicitly mentioned. For instance, if a user expresses a desire for a cold beverage, DetGPT can analyze the image, identify a fridge, and use its knowledge of typical fridge contents to locate the beverage. This flexibility makes our system applicable across a wide range of fields, from robotics and automation to autonomous driving. Overall, our proposed paradigm and DetGPT demonstrate the potential for more sophisticated and intuitive interactions between humans and machines. We hope that our proposed paradigm and approach will provide inspiration to the community and open the door to more interative and versatile object detection systems. Our project page is launched at detgpt.github.io.
Abstract:Neural Radiance Fields (NeRF) can generate highly realistic novel views. However, editing 3D scenes represented by NeRF across 360-degree views, particularly removing objects while preserving geometric and photometric consistency, remains a challenging problem due to NeRF's implicit scene representation. In this paper, we propose InpaintNeRF360, a unified framework that utilizes natural language instructions as guidance for inpainting NeRF-based 3D scenes.Our approach employs a promptable segmentation model by generating multi-modal prompts from the encoded text for multiview segmentation. We apply depth-space warping to enforce viewing consistency in the segmentations, and further refine the inpainted NeRF model using perceptual priors to ensure visual plausibility. InpaintNeRF360 is capable of simultaneously removing multiple objects or modifying object appearance based on text instructions while synthesizing 3D viewing-consistent and photo-realistic inpainting. Through extensive experiments on both unbounded and frontal-facing scenes trained through NeRF, we demonstrate the effectiveness of our approach and showcase its potential to enhance the editability of implicit radiance fields.
Abstract:Bilevel optimization has found successful applications in various machine learning problems, including hyper-parameter optimization, data cleaning, and meta-learning. However, its huge computational cost presents a significant challenge for its utilization in large-scale problems. This challenge arises due to the nested structure of the bilevel formulation, where each hyper-gradient computation necessitates a costly inner optimization procedure. To address this issue, we propose a reformulation of bilevel optimization as a minimax problem, effectively decoupling the outer-inner dependency. Under mild conditions, we show these two problems are equivalent. Furthermore, we introduce a multi-stage gradient descent and ascent (GDA) algorithm to solve the resulting minimax problem with convergence guarantees. Extensive experimental results demonstrate that our method outperforms state-of-the-art bilevel methods while significantly reducing the computational cost.
Abstract:We study distributionally robust offline reinforcement learning (robust offline RL), which seeks to find an optimal robust policy purely from an offline dataset that can perform well in perturbed environments. We propose a generic algorithm framework \underline{D}oubly \underline{P}essimistic \underline{M}odel-based \underline{P}olicy \underline{O}ptimization ($\texttt{P}^2\texttt{MPO}$) for robust offline RL, which features a novel combination of a flexible model estimation subroutine and a doubly pessimistic policy optimization step. The \emph{double pessimism} principle is crucial to overcome the distributional shift incurred by i) the mismatch between behavior policy and the family of target policies; and ii) the perturbation of the nominal model. Under certain accuracy assumptions on the model estimation subroutine, we show that $\texttt{P}^2\texttt{MPO}$ is provably efficient with \emph{robust partial coverage data}, which means that the offline dataset has good coverage of the distributions induced by the optimal robust policy and perturbed models around the nominal model. By tailoring specific model estimation subroutines for concrete examples including tabular Robust Markov Decision Process (RMDP), factored RMDP, and RMDP with kernel and neural function approximations, we show that $\texttt{P}^2\texttt{MPO}$ enjoys a $\tilde{\mathcal{O}}(n^{-1/2})$ convergence rate, where $n$ is the number of trajectories in the offline dataset. Notably, these models, except for the tabular case, are first identified and proven tractable by this paper. To the best of our knowledge, we first propose a general learning principle -- double pessimism -- for robust offline RL and show that it is provably efficient in the context of general function approximations.
Abstract:The proximal policy optimization (PPO) algorithm stands as one of the most prosperous methods in the field of reinforcement learning (RL). Despite its success, the theoretical understanding of PPO remains deficient. Specifically, it is unclear whether PPO or its optimistic variants can effectively solve linear Markov decision processes (MDPs), which are arguably the simplest models in RL with function approximation. To bridge this gap, we propose an optimistic variant of PPO for episodic adversarial linear MDPs with full-information feedback, and establish a $\tilde{\mathcal{O}}(d^{3/4}H^2K^{3/4})$ regret for it. Here $d$ is the ambient dimension of linear MDPs, $H$ is the length of each episode, and $K$ is the number of episodes. Compared with existing policy-based algorithms, we achieve the state-of-the-art regret bound in both stochastic linear MDPs and adversarial linear MDPs with full information. Additionally, our algorithm design features a novel multi-batched updating mechanism and the theoretical analysis utilizes a new covering number argument of value and policy classes, which might be of independent interest.
Abstract:Recognizing novel sub-categories with scarce samples is an essential and challenging research topic in computer vision. Existing literature focus on addressing this challenge through global-based or local-based representation approaches. The former employs global feature representations for recognization, which may lack fine-grained information. The latter captures local relationships with complex structures, possibly leading to high model complexity. To address the above challenges, this article proposes a novel framework called SGML-Net for few-shot fine-grained visual recognition. SGML-Net incorporates auxiliary information via saliency detection to guide discriminative representation learning, achieving high performance and low model complexity. Specifically, SGML-Net utilizes the saliency detection model to emphasize the key regions of each sub-category, providing a strong prior for representation learning. SGML-Net transfers such prior with two independent branches in a mutual learning paradigm. To achieve effective transfer, SGML-Net leverages the relationships among different regions, making the representation more informative and thus providing better guidance. The auxiliary branch is excluded upon the transfer's completion, ensuring low model complexity in deployment. The proposed approach is empirically evaluated on three widely-used benchmarks, demonstrating its superior performance.
Abstract:Currently intelligent diagnosis systems lack the ability of continually learning to diagnose new diseases once deployed, under the condition of preserving old disease knowledge. In particular, updating an intelligent diagnosis system with training data of new diseases would cause catastrophic forgetting of old disease knowledge. To address the catastrophic forgetting issue, a novel adapter-based strategy is proposed to help effectively learn a set of new diseases at each round (or task) of continual learning, without changing the shared feature extractor. The learnable lightweight task-specific adapter(s) can be flexibly designed (e.g., two convolutional layers) and then added to the pretrained and fixed feature extractor. Together with a specially designed task-specific head which absorbs all previously learned old diseases as a single 'out-of-distribution' category, task-specific adapter(s) can help the pretrained feature extractor more effectively extract discriminative features between diseases. In addition, a simple yet effective fine-tuning is applied to collaboratively fine-tune multiple task-specific heads such that outputs from different heads are comparable and consequently the appropriate classifier head can be more accurately selected during model inference. Extensive empirical evaluations on three image datasets demonstrate the superior performance of the proposed method in continual learning of new diseases. The source code will be released publicly.