Abstract:We introduce LongCat-Flash-Thinking-2601, a 560-billion-parameter open-source Mixture-of-Experts (MoE) reasoning model with superior agentic reasoning capability. LongCat-Flash-Thinking-2601 achieves state-of-the-art performance among open-source models on a wide range of agentic benchmarks, including agentic search, agentic tool use, and tool-integrated reasoning. Beyond benchmark performance, the model demonstrates strong generalization to complex tool interactions and robust behavior under noisy real-world environments. Its advanced capability stems from a unified training framework that combines domain-parallel expert training with subsequent fusion, together with an end-to-end co-design of data construction, environments, algorithms, and infrastructure spanning from pre-training to post-training. In particular, the model's strong generalization capability in complex tool-use are driven by our in-depth exploration of environment scaling and principled task construction. To optimize long-tailed, skewed generation and multi-turn agentic interactions, and to enable stable training across over 10,000 environments spanning more than 20 domains, we systematically extend our asynchronous reinforcement learning framework, DORA, for stable and efficient large-scale multi-environment training. Furthermore, recognizing that real-world tasks are inherently noisy, we conduct a systematic analysis and decomposition of real-world noise patterns, and design targeted training procedures to explicitly incorporate such imperfections into the training process, resulting in improved robustness for real-world applications. To further enhance performance on complex reasoning tasks, we introduce a Heavy Thinking mode that enables effective test-time scaling by jointly expanding reasoning depth and width through intensive parallel thinking.
Abstract:Novel view synthesis from low dynamic range (LDR) blurry images, which are common in the wild, struggles to recover high dynamic range (HDR) and sharp 3D representations in extreme lighting conditions. Although existing methods employ event data to address this issue, they ignore the sensor-physics mismatches between the camera output and physical world radiance, resulting in suboptimal HDR and deblurring results. To cope with this problem, we propose a unified sensor-physics grounded NeRF framework for sharp HDR novel view synthesis from single-exposure blurry LDR images and corresponding events. We employ NeRF to directly represent the actual radiance of the 3D scene in the HDR domain and model raw HDR scene rays hitting the sensor pixels as in the physical world. A pixel-wise RGB mapping field is introduced to align the above rendered pixel values with the sensor-recorded LDR pixel values of the input images. A novel event mapping field is also designed to bridge the physical scene dynamics and actual event sensor output. The two mapping fields are jointly optimized with the NeRF network, leveraging the spatial and temporal dynamic information in events to enhance the sharp HDR 3D representation learning. Experiments on the collected and public datasets demonstrate that our method can achieve state-of-the-art deblurring HDR novel view synthesis results with single-exposure blurry LDR images and corresponding events.
Abstract:Generating 3D-based body movements from speech shows great potential in extensive downstream applications, while it still suffers challenges in imitating realistic human movements. Predominant research efforts focus on end-to-end generation schemes to generate co-speech gestures, spanning GANs, VQ-VAE, and recent diffusion models. As an ill-posed problem, in this paper, we argue that these prevailing learning schemes fail to model crucial inter- and intra-correlations across different motion units, i.e. head, body, and hands, thus leading to unnatural movements and poor coordination. To delve into these intrinsic correlations, we propose a unified Hierarchical Implicit Periodicity (HIP) learning approach for audio-inspired 3D gesture generation. Different from predominant research, our approach models this multi-modal implicit relationship by two explicit technique insights: i) To disentangle the complicated gesture movements, we first explore the gesture motion phase manifolds with periodic autoencoders to imitate human natures from realistic distributions while incorporating non-period ones from current latent states for instance-level diversities. ii) To model the hierarchical relationship of face motions, body gestures, and hand movements, driving the animation with cascaded guidance during learning. We exhibit our proposed approach on 3D avatars and extensive experiments show our method outperforms the state-of-the-art co-speech gesture generation methods by both quantitative and qualitative evaluations. Code and models will be publicly available.
Abstract:Cross-Domain Few-Shot Learning (CDFSL) endeavors to transfer generalized knowledge from the source domain to target domains using only a minimal amount of training data, which faces a triplet of learning challenges in the meantime, i.e., semantic disjoint, large domain discrepancy, and data scarcity. Different from predominant CDFSL works focused on generalized representations, we make novel attempts to construct Intermediate Domain Proxies (IDP) with source feature embeddings as the codebook and reconstruct the target domain feature with this learned codebook. We then conduct an empirical study to explore the intrinsic attributes from perspectives of visual styles and semantic contents in intermediate domain proxies. Reaping benefits from these attributes of intermediate domains, we develop a fast domain alignment method to use these proxies as learning guidance for target domain feature transformation. With the collaborative learning of intermediate domain reconstruction and target feature transformation, our proposed model is able to surpass the state-of-the-art models by a margin on 8 cross-domain few-shot learning benchmarks.
Abstract:Semantic segmentation has achieved great success in ideal conditions. However, when facing extreme conditions (e.g., insufficient light, fierce camera motion), most existing methods suffer from significant information loss of RGB, severely damaging segmentation results. Several researches exploit the high-speed and high-dynamic event modality as a complement, but event and RGB are naturally heterogeneous, which leads to feature-level mismatch and inferior optimization of existing multi-modality methods. Different from these researches, we delve into the edge secret of both modalities for resilient fusion and propose a novel Edge-awareness Semantic Concordance framework to unify the multi-modality heterogeneous features with latent edge cues. In this framework, we first propose Edge-awareness Latent Re-coding, which obtains uncertainty indicators while realigning event-RGB features into unified semantic space guided by re-coded distribution, and transfers event-RGB distributions into re-coded features by utilizing a pre-established edge dictionary as clues. We then propose Re-coded Consolidation and Uncertainty Optimization, which utilize re-coded edge features and uncertainty indicators to solve the heterogeneous event-RGB fusion issues under extreme conditions. We establish two synthetic and one real-world event-RGB semantic segmentation datasets for extreme scenario comparisons. Experimental results show that our method outperforms the state-of-the-art by a 2.55% mIoU on our proposed DERS-XS, and possesses superior resilience under spatial occlusion. Our code and datasets are publicly available at https://github.com/iCVTEAM/ESC.




Abstract:Macro lens has the advantages of high resolution and large magnification, and 3D modeling of small and detailed objects can provide richer information. However, defocus blur in macrophotography is a long-standing problem that heavily hinders the clear imaging of the captured objects and high-quality 3D reconstruction of them. Traditional image deblurring methods require a large number of images and annotations, and there is currently no multi-view 3D reconstruction method for macrophotography. In this work, we propose a joint deblurring and 3D reconstruction method for macrophotography. Starting from multi-view blurry images captured, we jointly optimize the clear 3D model of the object and the defocus blur kernel of each pixel. The entire framework adopts a differentiable rendering method to self-supervise the optimization of the 3D model and the defocus blur kernel. Extensive experiments show that from a small number of multi-view images, our proposed method can not only achieve high-quality image deblurring but also recover high-fidelity 3D appearance.
Abstract:With rapid advances in code generation, reasoning, and problem-solving, Large Language Models (LLMs) are increasingly applied in robotics. Most existing work focuses on high-level tasks such as task decomposition. A few studies have explored the use of LLMs in feedback controller design; however, these efforts are restricted to overly simplified systems, fixed-structure gain tuning, and lack real-world validation. To further investigate LLMs in automatic control, this work targets a key subfield: adaptive control. Inspired by the framework of model reference adaptive control (MRAC), we propose an LLM-guided adaptive compensator framework that avoids designing controllers from scratch. Instead, the LLMs are prompted using the discrepancies between an unknown system and a reference system to design a compensator that aligns the response of the unknown system with that of the reference, thereby achieving adaptivity. Experiments evaluate five methods: LLM-guided adaptive compensator, LLM-guided adaptive controller, indirect adaptive control, learning-based adaptive control, and MRAC, on soft and humanoid robots in both simulated and real-world environments. Results show that the LLM-guided adaptive compensator outperforms traditional adaptive controllers and significantly reduces reasoning complexity compared to the LLM-guided adaptive controller. The Lyapunov-based analysis and reasoning-path inspection demonstrate that the LLM-guided adaptive compensator enables a more structured design process by transforming mathematical derivation into a reasoning task, while exhibiting strong generalizability, adaptability, and robustness. This study opens a new direction for applying LLMs in the field of automatic control, offering greater deployability and practicality compared to vision-language models.
Abstract:In-context learning (ICL), a predominant trend in instruction learning, aims at enhancing the performance of large language models by providing clear task guidance and examples, improving their capability in task understanding and execution. This paper investigates ICL on Large Vision-Language Models (LVLMs) and explores the policies of multi-modal demonstration selection. Existing research efforts in ICL face significant challenges: First, they rely on pre-defined demonstrations or heuristic selecting strategies based on human intuition, which are usually inadequate for covering diverse task requirements, leading to sub-optimal solutions; Second, individually selecting each demonstration fails in modeling the interactions between them, resulting in information redundancy. Unlike these prevailing efforts, we propose a new exploration-exploitation reinforcement learning framework, which explores policies to fuse multi-modal information and adaptively select adequate demonstrations as an integrated whole. The framework allows LVLMs to optimize themselves by continually refining their demonstrations through self-exploration, enabling the ability to autonomously identify and generate the most effective selection policies for in-context learning. Experimental results verify the superior performance of our approach on four Visual Question-Answering (VQA) datasets, demonstrating its effectiveness in enhancing the generalization capability of few-shot LVLMs.
Abstract:Accurate classification of sleep stages based on bio-signals is fundamental for automatic sleep stage annotation. Traditionally, this task relies on experienced clinicians to manually annotate data, a process that is both time-consuming and labor-intensive. In recent years, deep learning methods have shown promise in automating this task. However, three major challenges remain: (1) deep learning models typically require large-scale labeled datasets, making them less effective in real-world settings where annotated data is limited; (2) significant inter-individual variability in bio-signals often results in inconsistent model performance when applied to new subjects, limiting generalization; and (3) existing approaches often overlook the high-order relationships among bio-signals, failing to simultaneously capture signal heterogeneity and spatial-temporal dependencies. To address these issues, we propose MetaSTH-Sleep, a few-shot sleep stage classification framework based on spatial-temporal hypergraph enhanced meta-learning. Our approach enables rapid adaptation to new subjects using only a few labeled samples, while the hypergraph structure effectively models complex spatial interconnections and temporal dynamics simultaneously in EEG signals. Experimental results demonstrate that MetaSTH-Sleep achieves substantial performance improvements across diverse subjects, offering valuable insights to support clinicians in sleep stage annotation.
Abstract:Depicting novel classes with language descriptions by observing few-shot samples is inherent in human-learning systems. This lifelong learning capability helps to distinguish new knowledge from old ones through the increase of open-world learning, namely Few-Shot Class-Incremental Learning (FSCIL). Existing works to solve this problem mainly rely on the careful tuning of visual encoders, which shows an evident trade-off between the base knowledge and incremental ones. Motivated by human learning systems, we propose a new Language-inspired Relation Transfer (LRT) paradigm to understand objects by joint visual clues and text depictions, composed of two major steps. We first transfer the pretrained text knowledge to the visual domains by proposing a graph relation transformation module and then fuse the visual and language embedding by a text-vision prototypical fusion module. Second, to mitigate the domain gap caused by visual finetuning, we propose context prompt learning for fast domain alignment and imagined contrastive learning to alleviate the insufficient text data during alignment. With collaborative learning of domain alignments and text-image transfer, our proposed LRT outperforms the state-of-the-art models by over $13\%$ and $7\%$ on the final session of mini-ImageNet and CIFAR-100 FSCIL benchmarks.