Generalization to out-of-distribution (OOD) data is a critical challenge in machine learning. Ensemble-based methods, like weight space ensembles that interpolate model parameters, have been shown to achieve superior OOD performance. However, the underlying mechanism for their effectiveness remains unclear. In this study, we closely examine WiSE-FT, a popular weight space ensemble method that interpolates between a pre-trained and a fine-tuned model. We observe an unexpected phenomenon, in which WiSE-FT successfully corrects many cases where each individual model makes incorrect predictions, which contributes significantly to its OOD effectiveness. To gain further insights, we conduct theoretical analysis in a multi-class setting with a large number of spurious features. Our analysis predicts the above phenomenon and it further shows that ensemble-based models reduce prediction errors in the OOD settings by utilizing a more diverse set of spurious features. Contrary to the conventional wisdom that focuses on learning invariant features for better OOD performance, our findings suggest that incorporating a large number of diverse spurious features weakens their individual contributions, leading to improved overall OOD generalization performance. Empirically we demonstrate the effectiveness of utilizing diverse spurious features on a MultiColorMNIST dataset, and our experimental results are consistent with the theoretical analysis. Building upon the new theoretical insights into the efficacy of ensemble methods, we further identify an issue of WiSE-FT caused by the overconfidence of fine-tuned models in OOD situations. This overconfidence magnifies the fine-tuned model's incorrect prediction, leading to deteriorated OOD ensemble performance. To remedy this problem, we propose a novel method called BAlaNced averaGing (BANG), which significantly enhances the OOD performance of WiSE-FT.
The efficacy of modern generative models is commonly contingent upon the precision of score estimation along the diffusion path, with a focus on diffusion models and their ability to generate high-quality data samples. This study delves into the potentialities of posterior sampling through reverse diffusion. An examination of the sampling literature reveals that score estimation can be transformed into a mean estimation problem via the decomposition of the transition kernel. By estimating the mean of the auxiliary distribution, the reverse diffusion process can give rise to a novel posterior sampling algorithm, which diverges from traditional gradient-based Markov Chain Monte Carlo (MCMC) methods. We provide the convergence analysis in total variation distance and demonstrate that the isoperimetric dependency of the proposed algorithm is comparatively lower than that observed in conventional MCMC techniques, which justifies the superior performance for high dimensional sampling with error tolerance. Our analytical framework offers fresh perspectives on the complexity of score estimation at various time points, as denoted by the properties of the auxiliary distribution.
Large foundation models have demonstrated a great ability to achieve general human-level intelligence far beyond traditional approaches. As the technique keeps attracting attention from the AI community, more and more large foundation models have become publically available. However, most of those models exhibit a major deficiency in specialized-task applications, where the step of finetuning is still required for obtaining satisfactory performance. As the number of available models and specialized tasks keeps growing, the job of general finetuning becomes highly nontrivial. In this paper, we take the first step to address this issue. We introduce an extensible and lightweight toolkit, LMFlow, which aims to simplify the finetuning and inference of general large foundation models. LMFlow offers a complete finetuning workflow for a large foundation model to support personalized training with limited computing resources. Furthermore, it supports continuous pretraining, instruction tuning, parameter-efficient finetuning, alignment tuning, and large model inference, along with carefully designed and extensible APIs. This toolkit has been thoroughly tested and is available at https://github.com/OptimalScale/LMFlow.
In recent years, the field of computer vision has seen significant advancements thanks to the development of large language models (LLMs). These models have enabled more effective and sophisticated interactions between humans and machines, paving the way for novel techniques that blur the lines between human and machine intelligence. In this paper, we introduce a new paradigm for object detection that we call reasoning-based object detection. Unlike conventional object detection methods that rely on specific object names, our approach enables users to interact with the system using natural language instructions, allowing for a higher level of interactivity. Our proposed method, called DetGPT, leverages state-of-the-art multi-modal models and open-vocabulary object detectors to perform reasoning within the context of the user's instructions and the visual scene. This enables DetGPT to automatically locate the object of interest based on the user's expressed desires, even if the object is not explicitly mentioned. For instance, if a user expresses a desire for a cold beverage, DetGPT can analyze the image, identify a fridge, and use its knowledge of typical fridge contents to locate the beverage. This flexibility makes our system applicable across a wide range of fields, from robotics and automation to autonomous driving. Overall, our proposed paradigm and DetGPT demonstrate the potential for more sophisticated and intuitive interactions between humans and machines. We hope that our proposed paradigm and approach will provide inspiration to the community and open the door to more interative and versatile object detection systems. Our project page is launched at detgpt.github.io.
Generative foundation models are susceptible to implicit biases that can arise from extensive unsupervised training data. Such biases can produce suboptimal samples, skewed outcomes, and unfairness, with potentially significant repercussions. Consequently, aligning these models with human ethics and preferences is an essential step toward ensuring their responsible and effective deployment in real-world applications. Prior research has primarily employed Reinforcement Learning from Human Feedback (RLHF) as a means of addressing this problem, wherein generative models are fine-tuned using RL algorithms guided by a human-feedback-informed reward model. However, the inefficiencies and instabilities associated with RL algorithms frequently present substantial obstacles to the successful alignment of generative models, necessitating the development of a more robust and streamlined approach. To this end, we introduce a new framework, Reward rAnked FineTuning (RAFT), designed to align generative models more effectively. Utilizing a reward model and a sufficient number of samples, our approach selects the high-quality samples, discarding those that exhibit undesired behavior, and subsequently assembles a streaming dataset. This dataset serves as the basis for aligning the generative model and can be employed under both offline and online settings. Notably, the sample generation process within RAFT is gradient-free, rendering it compatible with black-box generators. Through extensive experiments, we demonstrate that our proposed algorithm exhibits strong performance in the context of both large language models and diffusion models.
We consider the general nonconvex nonconcave minimax problem over continuous variables. A major challenge for this problem is that a saddle point may not exist. In order to resolve this difficulty, we consider the related problem of finding a Mixed Nash Equilibrium, which is a randomized strategy represented by probability distributions over the continuous variables. We propose a Particle-based Primal-Dual Algorithm (PPDA) for a weakly entropy-regularized min-max optimization procedure over the probability distributions, which employs the stochastic movements of particles to represent the updates of random strategies for the mixed Nash Equilibrium. A rigorous convergence analysis of the proposed algorithm is provided. Compared to previous works that try to update particle weights without movements, PPDA is the first implementable particle-based algorithm with non-asymptotic quantitative convergence results, running time, and sample complexity guarantees. Our framework gives new insights into the design of particle-based algorithms for continuous min-max optimization in the general nonconvex nonconcave setting.
Despite significant progress in object categorization, in recent years, a number of important challenges remain; mainly, the ability to learn from limited labeled data and to recognize object classes within large, potentially open, set of labels. Zero-shot learning is one way of addressing these challenges, but it has only been shown to work with limited sized class vocabularies and typically requires separation between supervised and unsupervised classes, allowing former to inform the latter but not vice versa. We propose the notion of vocabulary-informed learning to alleviate the above mentioned challenges and address problems of supervised, zero-shot, generalized zero-shot and open set recognition using a unified framework. Specifically, we propose a weighted maximum margin framework for semantic manifold-based recognition that incorporates distance constraints from (both supervised and unsupervised) vocabulary atoms. Distance constraints ensure that labeled samples are projected closer to their correct prototypes, in the embedding space, than to others. We illustrate that resulting model shows improvements in supervised, zero-shot, generalized zero-shot, and large open set recognition, with up to 310K class vocabulary on Animal with Attributes and ImageNet datasets.
Particle-based variational inference (VI) minimizes the KL divergence between model samples and the target posterior with gradient flow estimates. With the popularity of Stein variational gradient descent (SVGD), the focus of particle-based VI algorithms has been on the properties of functions in Reproducing Kernel Hilbert Space (RKHS) to approximate the gradient flow. However, the requirement of RKHS restricts the function class and algorithmic flexibility. This paper remedies the problem by proposing a general framework to obtain tractable functional gradient flow estimates. The functional gradient flow in our framework can be defined by a general functional regularization term that includes the RKHS norm as a special case. We use our framework to propose a new particle-based VI algorithm: preconditioned functional gradient flow (PFG). Compared with SVGD, the proposed method has several advantages: larger function class; greater scalability in large particle-size scenarios; better adaptation to ill-conditioned distributions; provable continuous-time convergence in KL divergence. Non-linear function classes such as neural networks can be incorporated to estimate the gradient flow. Both theory and experiments have shown the effectiveness of our framework.
Normalizing flow (NF) has gained popularity over traditional maximum likelihood based methods due to its strong capability to model complex data distributions. However, the standard approach, which maps the observed data to a normal distribution, has difficulty in handling data distributions with multiple relatively isolated modes. To overcome this issue, we propose a new framework based on variational latent representation to improve the practical performance of NF. The idea is to replace the standard normal latent variable with a more general latent representation, jointly learned via Variational Bayes. For example, by taking the latent representation as a discrete sequence, our framework can learn a Transformer model that generates the latent sequence and an NF model that generates continuous data distribution conditioned on the sequence. The resulting method is significantly more powerful than the standard normalization flow approach for generating data distributions with multiple modes. Extensive experiments have shown the advantages of NF with variational latent representation.
Graph Neural Networks (GNNs), which aggregate features from neighbors, are widely used for graph-structured data processing due to their powerful representation learning capabilities. It is generally believed that GNNs can implicitly remove the non-predictive noises. However, the analysis of implicit denoising effect in graph neural networks remains open. In this work, we conduct a comprehensive theoretical study and analyze when and why the implicit denoising happens in GNNs. Specifically, we study the convergence properties of noise matrix. Our theoretical analysis suggests that the implicit denoising largely depends on the connectivity, the graph size, and GNN architectures. Moreover, we formally define and propose the adversarial graph signal denoising (AGSD) problem by extending graph signal denoising problem. By solving such a problem, we derive a robust graph convolution, where the smoothness of the node representations and the implicit denoising effect can be enhanced. Extensive empirical evaluations verify our theoretical analyses and the effectiveness of our proposed model.